File size: 6,969 Bytes
94c8770
 
 
 
 
712bb5f
94c8770
 
 
 
 
 
 
 
 
712bb5f
 
94c8770
 
 
712bb5f
 
94c8770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702e569
712bb5f
 
94c8770
 
 
 
 
712bb5f
 
 
94c8770
712bb5f
 
94c8770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712bb5f
94c8770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712bb5f
 
 
94c8770
712bb5f
 
702e569
94c8770
 
 
 
 
 
 
 
702e569
94c8770
 
 
702e569
94c8770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712bb5f
94c8770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712bb5f
94c8770
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import annotations

import asyncio
import json
import logging
import os
import time
from typing import Any, Dict, List, Optional

from fastapi import FastAPI, HTTPException, Request, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
from pydantic import BaseModel

app = FastAPI(
    title="Sheikh LLM Studio",
    description="Advanced LLM platform with chat, tools, and model workflows",
    version="2.0.0",
)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

STATIC_DIR = "static"
TEMPLATES_DIR = "templates"
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
templates = Jinja2Templates(directory=TEMPLATES_DIR)


class Config:
    HF_TOKEN: Optional[str] = os.getenv("HF_TOKEN")
    AVAILABLE_MODELS: Dict[str, str] = {
        "mistral-small": "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
        "mistral-large": "mistralai/Mistral-Large-Instruct-2411",
        "mistral-7b": "mistralai/Mistral-7B-Instruct-v0.3",
        "baby-grok": "IntelligentEstate/Baby_Grok3-1.5b-iQ4_K_M-GGUF",
    }


class ChatRequest(BaseModel):
    message: str
    model: str = "mistral-small"
    max_tokens: int = 500
    temperature: float = 0.7
    stream: bool = False


class ChatResponse(BaseModel):
    response: str
    model: str
    status: str


class ToolRequest(BaseModel):
    tool: str
    parameters: Dict[str, Any]


class ModelConfig(BaseModel):
    base_model: str
    dataset_path: str
    training_config: Dict[str, Any]


connected_clients: List[WebSocket] = []


@app.on_event("startup")
async def startup_event() -> None:
    logger.info("Starting Sheikh LLM Studio")
    if not Config.HF_TOKEN:
        logger.warning("HF_TOKEN not set; gated models will not be accessible.")


@app.get("/", response_class=HTMLResponse)
async def home(request: Request) -> HTMLResponse:
    return templates.TemplateResponse("index.html", {"request": request})


@app.get("/chat", response_class=HTMLResponse)
async def chat_interface(request: Request) -> HTMLResponse:
    return templates.TemplateResponse("chat.html", {"request": request})


@app.get("/studio", response_class=HTMLResponse)
async def model_studio(request: Request) -> HTMLResponse:
    return templates.TemplateResponse("studio.html", {"request": request})


@app.get("/api/models")
async def get_available_models() -> Dict[str, Any]:
    return {"models": Config.AVAILABLE_MODELS, "status": "success"}


@app.post("/api/chat", response_model=ChatResponse)
async def chat_completion(request: ChatRequest) -> ChatResponse:
    if not request.message.strip():
        raise HTTPException(status_code=400, detail="Message cannot be empty")

    if request.model not in Config.AVAILABLE_MODELS:
        raise HTTPException(status_code=400, detail="Unknown model selection")

    if Config.HF_TOKEN is None:
        raise HTTPException(status_code=500, detail="HF_TOKEN environment variable is not set")

    model_id = Config.AVAILABLE_MODELS[request.model]
    client = InferenceClient(model=model_id, token=Config.HF_TOKEN)

    prompt = request.message
    if "mistral" in request.model:
        prompt = f"<s>[INST] {request.message.strip()} [/INST]"

    try:
        if request.stream:
            generated_text = ""
            for chunk in client.text_generation(
                prompt,
                max_new_tokens=request.max_tokens,
                temperature=request.temperature,
                stream=True,
            ):
                generated_text += getattr(chunk, "token", "")
                await asyncio.sleep(0)
        else:
            generated_text = client.text_generation(
                prompt,
                max_new_tokens=request.max_tokens,
                temperature=request.temperature,
            )
    except Exception as exc:  # pragma: no cover - external service
        logger.error("Chat generation failed: %s", exc)
        raise HTTPException(status_code=502, detail=f"Model error: {exc}") from exc

    return ChatResponse(response=generated_text, model=request.model, status="success")


@app.websocket("/ws/chat")
async def websocket_chat(websocket: WebSocket) -> None:
    await websocket.accept()
    connected_clients.append(websocket)
    try:
        while True:
            data = await websocket.receive_text()
            message_data = json.loads(data)
            user_message = message_data.get("message", "")
            response_text = f"Echo: {user_message}"
            for index in range(1, len(response_text) + 1):
                await websocket.send_text(json.dumps({"chunk": response_text[:index], "done": False}))
                await asyncio.sleep(0.1)
            await websocket.send_text(json.dumps({"chunk": response_text, "done": True}))
    except WebSocketDisconnect:
        connected_clients.remove(websocket)


@app.post("/api/tools/search")
async def search_tool(request: ToolRequest) -> Dict[str, Any]:
    if request.tool != "web_search":
        raise HTTPException(status_code=400, detail="Unknown tool")

    query = request.parameters.get("query", "")
    return {
        "tool": "web_search",
        "results": [
            {"title": f"Result 1 for {query}", "url": "#"},
            {"title": f"Result 2 for {query}", "url": "#"},
        ],
        "status": "success",
    }


@app.post("/api/tools/code")
async def code_tool(request: ToolRequest) -> Dict[str, Any]:
    if request.tool != "execute_python":
        raise HTTPException(status_code=400, detail="Unknown tool")

    code = request.parameters.get("code", "")
    return {
        "tool": "execute_python",
        "output": f"Executed code: {code}",
        "status": "success",
    }


@app.post("/api/studio/create-model")
async def create_model(config: ModelConfig) -> Dict[str, Any]:
    job_id = f"train_{int(time.time())}"
    training_job = {
        "job_id": job_id,
        "status": "queued",
        "base_model": config.base_model,
        "dataset_path": config.dataset_path,
        "config": config.training_config,
    }
    return {
        "job": training_job,
        "message": "Training job queued successfully",
        "status": "success",
    }


@app.get("/api/studio/jobs/{job_id}")
async def get_training_job(job_id: str) -> Dict[str, Any]:
    return {
        "job_id": job_id,
        "status": "completed",
        "progress": 100,
        "model_url": f"https://huggingface.co/RecentCoders/{job_id}",
    }


@app.get("/health")
async def health_check() -> Dict[str, Any]:
    return {
        "status": "healthy",
        "service": "sheikh-llm-studio",
        "version": "2.0.0",
        "features": ["chat", "tools", "model_studio", "websockets"],
    }


if __name__ == "__main__":  # pragma: no cover
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=7860)