File size: 18,996 Bytes
069aef5
f3a65d7
 
 
6af20e8
 
 
63a7abd
 
6af20e8
 
f3a65d7
 
 
 
 
 
 
 
 
 
 
a72a934
f3a65d7
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a65d7
a72a934
f3a65d7
 
 
a72a934
f3a65d7
 
 
069aef5
 
 
 
 
 
 
a72a934
 
069aef5
f3a65d7
 
a72a934
f3a65d7
a72a934
f3a65d7
069aef5
 
a72a934
 
 
 
 
069aef5
f3a65d7
 
 
a72a934
f3a65d7
 
 
069aef5
f3a65d7
 
a72a934
 
 
 
 
 
 
f3a65d7
 
069aef5
a72a934
069aef5
f3a65d7
a72a934
 
 
 
f3a65d7
 
069aef5
 
a72a934
f3a65d7
 
069aef5
f3a65d7
 
 
069aef5
f3a65d7
069aef5
a72a934
f3a65d7
069aef5
a72a934
 
 
 
f3a65d7
a72a934
 
 
f3a65d7
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
f3a65d7
a72a934
f3a65d7
069aef5
a72a934
069aef5
a72a934
f3a65d7
a72a934
f3a65d7
a72a934
 
 
 
069aef5
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069aef5
 
a72a934
 
069aef5
 
 
a72a934
 
 
 
069aef5
 
 
a72a934
069aef5
a72a934
069aef5
a72a934
 
f3a65d7
a72a934
 
f3a65d7
 
 
 
 
069aef5
 
 
 
 
 
f3a65d7
 
a72a934
f3a65d7
069aef5
 
f3a65d7
 
 
a72a934
f3a65d7
 
069aef5
 
 
a72a934
069aef5
 
 
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a65d7
 
 
 
 
 
 
 
a72a934
069aef5
 
a72a934
 
 
 
 
 
069aef5
 
f3a65d7
 
 
069aef5
f3a65d7
069aef5
 
 
 
 
 
 
a72a934
f3a65d7
 
 
 
 
 
069aef5
 
 
 
 
 
 
a72a934
069aef5
 
 
a72a934
 
069aef5
 
 
 
 
 
 
 
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069aef5
a72a934
 
 
 
 
 
 
 
f3a65d7
a72a934
 
 
 
 
 
069aef5
a72a934
 
069aef5
a72a934
 
 
f3a65d7
069aef5
a72a934
f3a65d7
 
a72a934
f3a65d7
a72a934
 
f3a65d7
a72a934
 
 
 
069aef5
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069aef5
f3a65d7
069aef5
 
 
a72a934
 
069aef5
a72a934
069aef5
 
 
 
 
a72a934
 
 
069aef5
a72a934
 
 
 
 
069aef5
f3a65d7
 
a72a934
069aef5
a72a934
 
 
 
 
 
 
f3a65d7
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069aef5
 
 
a72a934
069aef5
a72a934
 
 
 
 
069aef5
 
 
 
 
a72a934
 
 
069aef5
a72a934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a65d7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# pages/linkedin_extractor.py
import streamlit as st
import requests
from bs4 import BeautifulSoup
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_core.documents import Document
from langchain_community.llms import HuggingFaceHub
import re
import time
import os

st.set_page_config(
    page_title="LinkedIn AI Analyzer",
    page_icon="πŸ’Ό",
    layout="wide"
)

def get_embeddings():
    """Initialize embeddings with multiple fallback options"""
    try:
        # Try multiple embedding models
        model_options = [
            "sentence-transformers/all-MiniLM-L6-v2",  # Default
            "sentence-transformers/paraphrase-albert-small-v2",  # Smaller alternative
            "sentence-transformers/all-mpnet-base-v2"  # Higher quality
        ]
        
        for model_name in model_options:
            try:
                embeddings = HuggingFaceEmbeddings(
                    model_name=model_name,
                    model_kwargs={'device': 'cpu'},
                    encode_kwargs={'normalize_embeddings': True}
                )
                st.success(f"βœ… Loaded embeddings: {model_name.split('/')[-1]}")
                return embeddings
            except Exception as e:
                continue
                
        st.error("❌ All embedding models failed to load")
        return None
        
    except Exception as e:
        st.error(f"❌ Embeddings error: {e}")
        return None

def get_llm():
    """Initialize Mistral 7B LLM - Best for analysis"""
    try:
        api_key = os.getenv('HUGGINGFACEHUB_API_TOKEN')
        if not api_key:
            st.error("""
            ❌ HuggingFace API Key not found!
            
            Please add your API key:
            1. Go to Space Settings β†’ Variables and Secrets
            2. Add: HUGGINGFACEHUB_API_TOKEN = "your_hf_token_here"
            3. Restart the Space
            
            Get free API key: https://huggingface.co/settings/tokens
            """)
            return None
        
        # Using Mistral 7B - Best balance of quality and accessibility
        llm = HuggingFaceHub(
            repo_id="mistralai/Mistral-7B-Instruct-v0.1",
            huggingfacehub_api_token=api_key,
            model_kwargs={
                "temperature": 0.7,
                "max_length": 2048,
                "max_new_tokens": 512,
                "top_p": 0.95,
                "repetition_penalty": 1.1,
                "do_sample": True
            }
        )
        return llm
    except Exception as e:
        st.error(f"❌ AI Model error: {e}")
        return None

def extract_linkedin_data(url, data_type):
    """Extract data from LinkedIn URLs"""
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate, br',
            'DNT': '1',
            'Connection': 'keep-alive',
            'Upgrade-Insecure-Requests': '1',
        }
        
        st.info(f"🌐 Accessing: {url}")
        response = requests.get(url, headers=headers, timeout=25)
        
        if response.status_code != 200:
            return {
                "error": f"Failed to access page (Status: {response.status_code})",
                "status": "error"
            }
        
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Remove scripts and styles
        for script in soup(["script", "style", "meta", "link", "nav", "header", "footer"]):
            script.decompose()
        
        # Extract and clean text
        text = soup.get_text()
        lines = (line.strip() for line in text.splitlines())
        chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
        clean_text = ' '.join(chunk for chunk in chunks if chunk)
        
        # Extract meaningful content
        paragraphs = [p.strip() for p in clean_text.split('.') if len(p.strip()) > 40]
        
        if not paragraphs:
            return {
                "error": "No meaningful content found. The page might require login or have restricted access.",
                "status": "error"
            }
        
        # Extract page title
        title = soup.find('title')
        page_title = title.text.strip() if title else "LinkedIn Page"
        
        # Structure the extracted data
        extracted_data = {
            "page_info": {
                "title": page_title,
                "url": url,
                "response_code": response.status_code,
                "content_length": len(clean_text)
            },
            "content_blocks": paragraphs,
            "extraction_time": time.strftime('%Y-%m-%d %H:%M:%S'),
            "data_type": data_type,
            "status": "success"
        }
        
        return extracted_data
        
    except requests.exceptions.Timeout:
        return {"error": "Request timed out. Please try again.", "status": "error"}
    except requests.exceptions.ConnectionError:
        return {"error": "Connection failed. Please check the URL and try again.", "status": "error"}
    except Exception as e:
        return {"error": f"Extraction error: {str(e)}", "status": "error"}

def process_extracted_data(extracted_data):
    """Process extracted data for AI analysis"""
    if not extracted_data or extracted_data.get("status") != "success":
        return None, []
    
    page_info = extracted_data['page_info']
    content_blocks = extracted_data['content_blocks']
    
    # Structure the data for AI
    all_text = f"LINKEDIN DATA ANALYSIS REPORT\n"
    all_text += "=" * 70 + "\n\n"
    all_text += f"πŸ“„ PAGE INFORMATION:\n"
    all_text += f"Title: {page_info['title']}\n"
    all_text += f"URL: {page_info['url']}\n"
    all_text += f"Type: {extracted_data['data_type'].upper()}\n"
    all_text += f"Extracted: {extracted_data['extraction_time']}\n"
    all_text += f"Response Code: {page_info['response_code']}\n"
    all_text += f"Content Length: {page_info['content_length']} characters\n\n"
    
    all_text += f"πŸ“Š CONTENT ANALYSIS:\n"
    all_text += f"Total Content Blocks: {len(content_blocks)}\n\n"
    
    # Add content blocks
    for i, block in enumerate(content_blocks[:20]):
        all_text += f"--- CONTENT BLOCK {i+1} ---\n"
        all_text += f"Words: {len(block.split())} | Characters: {len(block)}\n"
        all_text += f"Content: {block}\n\n"
    
    all_text += "=" * 70 + "\n"
    all_text += "END OF EXTRACTION REPORT"
    
    # Split into chunks
    splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    
    chunks = splitter.split_text(all_text)
    documents = [Document(page_content=chunk) for chunk in chunks]
    
    # Create vector store
    try:
        embeddings = get_embeddings()
        if embeddings is None:
            return None, []
        vectorstore = FAISS.from_documents(documents, embeddings)
        return vectorstore, chunks
    except Exception as e:
        st.error(f"Vector store creation failed: {e}")
        return None, []

def create_chatbot(vectorstore):
    """Create conversational chatbot with Mistral"""
    try:
        llm = get_llm()
        if llm is None:
            return None
        
        memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key="answer"
        )
        
        chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
            memory=memory,
            return_source_documents=True,
            output_key="answer"
        )
        return chain
    except Exception as e:
        st.error(f"Failed to create chatbot: {str(e)}")
        return None

def clear_chat_history():
    """Clear chat history while keeping extracted data"""
    if "vectorstore" in st.session_state and st.session_state.vectorstore:
        st.session_state.chatbot = create_chatbot(st.session_state.vectorstore)
        st.session_state.chat_history = []
        st.success("πŸ”„ Chat history cleared! Starting fresh conversation.")

def display_metrics(extracted_data):
    """Display extraction metrics"""
    if not extracted_data:
        return
    
    page_info = extracted_data['page_info']
    content_blocks = extracted_data['content_blocks']
    
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        st.metric("Content Blocks", len(content_blocks))
    
    with col2:
        total_words = sum(len(block.split()) for block in content_blocks)
        st.metric("Total Words", total_words)
    
    with col3:
        st.metric("Characters", f"{page_info['content_length']:,}")
    
    with col4:
        st.metric("Response Code", page_info['response_code'])

def main():
    st.title("πŸ’Ό LinkedIn AI Analyzer")
    
    if st.button("← Back to Main Dashboard"):
        st.switch_page("app.py")
    
    # Initialize session state
    if "extracted_data" not in st.session_state:
        st.session_state.extracted_data = None
    if "vectorstore" not in st.session_state:
        st.session_state.vectorstore = None
    if "chatbot" not in st.session_state:
        st.session_state.chatbot = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []
    if "processing" not in st.session_state:
        st.session_state.processing = False
    if "current_url" not in st.session_state:
        st.session_state.current_url = ""
    
    # Sidebar
    with st.sidebar:
        st.markdown("### βš™οΈ Configuration")
        
        # Data type selection
        data_type = st.selectbox(
            "πŸ“Š Content Type",
            ["profile", "company", "post"],
            help="Select the type of LinkedIn content"
        )
        
        # URL input
        url_placeholder = {
            "profile": "https://www.linkedin.com/in/username/",
            "company": "https://www.linkedin.com/company/companyname/", 
            "post": "https://www.linkedin.com/posts/username_postid/"
        }
        
        linkedin_url = st.text_input(
            "🌐 LinkedIn URL",
            placeholder=url_placeholder[data_type],
            help="Enter a public LinkedIn URL"
        )
        
        # Suggested URLs
        st.markdown("### πŸš€ Quick Test")
        suggested_urls = {
            "Microsoft": "https://www.linkedin.com/company/microsoft/",
            "Google": "https://www.linkedin.com/company/google/",
            "Apple": "https://www.linkedin.com/company/apple/",
            "Amazon": "https://www.linkedin.com/company/amazon/"
        }
        
        for name, url in suggested_urls.items():
            if st.button(f"🏒 {name}", key=name, use_container_width=True):
                st.session_state.current_url = url
                st.rerun()
        
        # Extract button
        if st.button("πŸš€ Extract & Analyze", type="primary", use_container_width=True):
            url_to_use = linkedin_url.strip() or st.session_state.current_url
            
            if not url_to_use:
                st.warning("⚠️ Please enter a LinkedIn URL")
            elif not url_to_use.startswith('https://www.linkedin.com/'):
                st.error("❌ Please enter a valid LinkedIn URL")
            else:
                st.session_state.processing = True
                with st.spinner("πŸ”„ Extracting and analyzing data..."):
                    extracted_data = extract_linkedin_data(url_to_use, data_type)
                    
                    if extracted_data.get("status") == "success":
                        st.session_state.extracted_data = extracted_data
                        st.session_state.current_url = url_to_use
                        
                        # Process for AI
                        vectorstore, chunks = process_extracted_data(extracted_data)
                        if vectorstore:
                            st.session_state.vectorstore = vectorstore
                            st.session_state.chatbot = create_chatbot(vectorstore)
                            st.session_state.chat_history = []
                            st.success(f"βœ… Successfully processed {len(chunks)} content chunks!")
                            st.balloons()
                        else:
                            st.error("❌ Failed to process data for AI analysis")
                    else:
                        error_msg = extracted_data.get("error", "Unknown error occurred")
                        st.error(f"❌ Extraction failed: {error_msg}")
                
                st.session_state.processing = False
        
        # Chat management
        if st.session_state.chatbot and st.session_state.extracted_data:
            st.markdown("---")
            st.subheader("πŸ’¬ Chat Management")
            if st.button("πŸ—‘οΈ Clear Chat History", type="secondary", use_container_width=True):
                clear_chat_history()
    
    # Main content area
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.markdown("### πŸ“Š Extraction Results")
        
        if st.session_state.processing:
            st.info("πŸ”„ Processing LinkedIn data...")
        
        elif st.session_state.extracted_data:
            data = st.session_state.extracted_data
            page_info = data['page_info']
            content_blocks = data['content_blocks']
            
            st.success("βœ… Extraction Complete")
            
            # Display metrics
            display_metrics(data)
            
            # Display page info
            st.markdown("#### 🏷️ Page Information")
            st.write(f"**Title:** {page_info['title']}")
            st.write(f"**URL:** {page_info['url']}")
            st.write(f"**Data Type:** {data['data_type'].title()}")
            st.write(f"**Content Blocks:** {len(content_blocks)}")
            st.write(f"**Extraction Time:** {data['extraction_time']}")
            
            # Display sample content
            st.markdown("#### πŸ“ Sample Content")
            for i, block in enumerate(content_blocks[:3]):
                with st.expander(f"Content Block {i+1} ({len(block.split())} words)"):
                    st.write(block)
            
            if len(content_blocks) > 3:
                st.info(f"πŸ“„ And {len(content_blocks) - 3} more content blocks...")
        
        else:
            st.info("""
            πŸ‘‹ **Welcome to LinkedIn AI Analyzer!**
            
            **Powered by Mistral 7B AI**
            
            **To get started:**
            1. Select content type
            2. Enter a LinkedIn URL or click a suggested company
            3. Click "Extract & Analyze"
            4. Chat with AI about the extracted content
            
            **Supported URLs:**
            - πŸ‘€ Public Profiles
            - 🏒 Company Pages  
            - πŸ“ Public Posts
            
            **AI Features:**
            - Smart content analysis
            - Conversational chat
            - Data insights
            - Content summarization
            """)
    
    with col2:
        st.markdown("### πŸ’¬ AI Chat Analysis")
        
        if st.session_state.chatbot and st.session_state.extracted_data:
            # Display chat history
            for i, chat in enumerate(st.session_state.chat_history):
                if chat["role"] == "user":
                    st.markdown(f"**πŸ‘€ You:** {chat['content']}")
                elif chat["role"] == "assistant":
                    st.markdown(f"**πŸ€– AI:** {chat['content']}")
            
            # Chat input
            user_input = st.chat_input("Ask about the LinkedIn data...")
            
            if user_input:
                # Add user message
                st.session_state.chat_history.append({"role": "user", "content": user_input})
                
                # Generate AI response
                with st.spinner("πŸ€” Mistral AI is analyzing..."):
                    try:
                        response = st.session_state.chatbot.invoke({"question": user_input})
                        answer = response.get("answer", "I couldn't generate a response based on the available data.")
                        
                        st.session_state.chat_history.append({"role": "assistant", "content": answer})
                        st.rerun()
                    except Exception as e:
                        error_msg = f"❌ Error generating response: {str(e)}"
                        st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
                        st.rerun()
            
            # Suggested questions
            if not st.session_state.chat_history:
                st.markdown("#### πŸ’‘ Suggested Questions")
                suggestions = [
                    "Summarize the main information from this page",
                    "What are the key highlights or achievements?",
                    "Analyze the business or professional focus",
                    "What insights can you extract from this content?",
                    "Provide a comprehensive overview"
                ]
                
                for suggestion in suggestions:
                    if st.button(suggestion, key=f"suggest_{suggestion}", use_container_width=True):
                        st.info(f"πŸ’‘ Try asking: '{suggestion}'")
        
        elif st.session_state.extracted_data:
            st.info("πŸ’¬ Start a conversation with the AI assistant")
        else:
            st.info("πŸ” Extract LinkedIn data to enable AI analysis")

    # Features section
    st.markdown("---")
    st.markdown("### πŸš€ Powered by Mistral 7B AI")
    
    feature_cols = st.columns(3)
    
    with feature_cols[0]:
        st.markdown("""
        **πŸ€– Advanced AI**
        - Mistral 7B Instruct model
        - Intelligent text analysis
        - Contextual understanding
        """)
    
    with feature_cols[1]:
        st.markdown("""
        **πŸ’¬ Smart Chat**
        - Conversational memory
        - Relevant responses
        - Data-driven insights
        """)
    
    with feature_cols[2]:
        st.markdown("""
        **πŸ” Deep Analysis**
        - Content summarization
        - Pattern recognition
        - Professional insights
        """)

if __name__ == "__main__":
    main()