File size: 18,996 Bytes
069aef5 f3a65d7 6af20e8 63a7abd 6af20e8 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 069aef5 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 069aef5 f3a65d7 a72a934 f3a65d7 069aef5 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 069aef5 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 f3a65d7 069aef5 f3a65d7 069aef5 f3a65d7 069aef5 a72a934 f3a65d7 069aef5 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 069aef5 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 f3a65d7 a72a934 f3a65d7 069aef5 f3a65d7 a72a934 f3a65d7 069aef5 f3a65d7 a72a934 f3a65d7 069aef5 a72a934 069aef5 a72a934 f3a65d7 a72a934 069aef5 a72a934 069aef5 f3a65d7 069aef5 f3a65d7 069aef5 a72a934 f3a65d7 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 f3a65d7 a72a934 069aef5 a72a934 069aef5 a72a934 f3a65d7 069aef5 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 f3a65d7 a72a934 069aef5 a72a934 069aef5 f3a65d7 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 f3a65d7 a72a934 069aef5 a72a934 f3a65d7 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 069aef5 a72a934 f3a65d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# pages/linkedin_extractor.py
import streamlit as st
import requests
from bs4 import BeautifulSoup
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_core.documents import Document
from langchain_community.llms import HuggingFaceHub
import re
import time
import os
st.set_page_config(
page_title="LinkedIn AI Analyzer",
page_icon="πΌ",
layout="wide"
)
def get_embeddings():
"""Initialize embeddings with multiple fallback options"""
try:
# Try multiple embedding models
model_options = [
"sentence-transformers/all-MiniLM-L6-v2", # Default
"sentence-transformers/paraphrase-albert-small-v2", # Smaller alternative
"sentence-transformers/all-mpnet-base-v2" # Higher quality
]
for model_name in model_options:
try:
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
st.success(f"β
Loaded embeddings: {model_name.split('/')[-1]}")
return embeddings
except Exception as e:
continue
st.error("β All embedding models failed to load")
return None
except Exception as e:
st.error(f"β Embeddings error: {e}")
return None
def get_llm():
"""Initialize Mistral 7B LLM - Best for analysis"""
try:
api_key = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_key:
st.error("""
β HuggingFace API Key not found!
Please add your API key:
1. Go to Space Settings β Variables and Secrets
2. Add: HUGGINGFACEHUB_API_TOKEN = "your_hf_token_here"
3. Restart the Space
Get free API key: https://huggingface.co/settings/tokens
""")
return None
# Using Mistral 7B - Best balance of quality and accessibility
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
huggingfacehub_api_token=api_key,
model_kwargs={
"temperature": 0.7,
"max_length": 2048,
"max_new_tokens": 512,
"top_p": 0.95,
"repetition_penalty": 1.1,
"do_sample": True
}
)
return llm
except Exception as e:
st.error(f"β AI Model error: {e}")
return None
def extract_linkedin_data(url, data_type):
"""Extract data from LinkedIn URLs"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
}
st.info(f"π Accessing: {url}")
response = requests.get(url, headers=headers, timeout=25)
if response.status_code != 200:
return {
"error": f"Failed to access page (Status: {response.status_code})",
"status": "error"
}
soup = BeautifulSoup(response.text, 'html.parser')
# Remove scripts and styles
for script in soup(["script", "style", "meta", "link", "nav", "header", "footer"]):
script.decompose()
# Extract and clean text
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
clean_text = ' '.join(chunk for chunk in chunks if chunk)
# Extract meaningful content
paragraphs = [p.strip() for p in clean_text.split('.') if len(p.strip()) > 40]
if not paragraphs:
return {
"error": "No meaningful content found. The page might require login or have restricted access.",
"status": "error"
}
# Extract page title
title = soup.find('title')
page_title = title.text.strip() if title else "LinkedIn Page"
# Structure the extracted data
extracted_data = {
"page_info": {
"title": page_title,
"url": url,
"response_code": response.status_code,
"content_length": len(clean_text)
},
"content_blocks": paragraphs,
"extraction_time": time.strftime('%Y-%m-%d %H:%M:%S'),
"data_type": data_type,
"status": "success"
}
return extracted_data
except requests.exceptions.Timeout:
return {"error": "Request timed out. Please try again.", "status": "error"}
except requests.exceptions.ConnectionError:
return {"error": "Connection failed. Please check the URL and try again.", "status": "error"}
except Exception as e:
return {"error": f"Extraction error: {str(e)}", "status": "error"}
def process_extracted_data(extracted_data):
"""Process extracted data for AI analysis"""
if not extracted_data or extracted_data.get("status") != "success":
return None, []
page_info = extracted_data['page_info']
content_blocks = extracted_data['content_blocks']
# Structure the data for AI
all_text = f"LINKEDIN DATA ANALYSIS REPORT\n"
all_text += "=" * 70 + "\n\n"
all_text += f"π PAGE INFORMATION:\n"
all_text += f"Title: {page_info['title']}\n"
all_text += f"URL: {page_info['url']}\n"
all_text += f"Type: {extracted_data['data_type'].upper()}\n"
all_text += f"Extracted: {extracted_data['extraction_time']}\n"
all_text += f"Response Code: {page_info['response_code']}\n"
all_text += f"Content Length: {page_info['content_length']} characters\n\n"
all_text += f"π CONTENT ANALYSIS:\n"
all_text += f"Total Content Blocks: {len(content_blocks)}\n\n"
# Add content blocks
for i, block in enumerate(content_blocks[:20]):
all_text += f"--- CONTENT BLOCK {i+1} ---\n"
all_text += f"Words: {len(block.split())} | Characters: {len(block)}\n"
all_text += f"Content: {block}\n\n"
all_text += "=" * 70 + "\n"
all_text += "END OF EXTRACTION REPORT"
# Split into chunks
splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = splitter.split_text(all_text)
documents = [Document(page_content=chunk) for chunk in chunks]
# Create vector store
try:
embeddings = get_embeddings()
if embeddings is None:
return None, []
vectorstore = FAISS.from_documents(documents, embeddings)
return vectorstore, chunks
except Exception as e:
st.error(f"Vector store creation failed: {e}")
return None, []
def create_chatbot(vectorstore):
"""Create conversational chatbot with Mistral"""
try:
llm = get_llm()
if llm is None:
return None
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key="answer"
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
memory=memory,
return_source_documents=True,
output_key="answer"
)
return chain
except Exception as e:
st.error(f"Failed to create chatbot: {str(e)}")
return None
def clear_chat_history():
"""Clear chat history while keeping extracted data"""
if "vectorstore" in st.session_state and st.session_state.vectorstore:
st.session_state.chatbot = create_chatbot(st.session_state.vectorstore)
st.session_state.chat_history = []
st.success("π Chat history cleared! Starting fresh conversation.")
def display_metrics(extracted_data):
"""Display extraction metrics"""
if not extracted_data:
return
page_info = extracted_data['page_info']
content_blocks = extracted_data['content_blocks']
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Content Blocks", len(content_blocks))
with col2:
total_words = sum(len(block.split()) for block in content_blocks)
st.metric("Total Words", total_words)
with col3:
st.metric("Characters", f"{page_info['content_length']:,}")
with col4:
st.metric("Response Code", page_info['response_code'])
def main():
st.title("πΌ LinkedIn AI Analyzer")
if st.button("β Back to Main Dashboard"):
st.switch_page("app.py")
# Initialize session state
if "extracted_data" not in st.session_state:
st.session_state.extracted_data = None
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "chatbot" not in st.session_state:
st.session_state.chatbot = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "processing" not in st.session_state:
st.session_state.processing = False
if "current_url" not in st.session_state:
st.session_state.current_url = ""
# Sidebar
with st.sidebar:
st.markdown("### βοΈ Configuration")
# Data type selection
data_type = st.selectbox(
"π Content Type",
["profile", "company", "post"],
help="Select the type of LinkedIn content"
)
# URL input
url_placeholder = {
"profile": "https://www.linkedin.com/in/username/",
"company": "https://www.linkedin.com/company/companyname/",
"post": "https://www.linkedin.com/posts/username_postid/"
}
linkedin_url = st.text_input(
"π LinkedIn URL",
placeholder=url_placeholder[data_type],
help="Enter a public LinkedIn URL"
)
# Suggested URLs
st.markdown("### π Quick Test")
suggested_urls = {
"Microsoft": "https://www.linkedin.com/company/microsoft/",
"Google": "https://www.linkedin.com/company/google/",
"Apple": "https://www.linkedin.com/company/apple/",
"Amazon": "https://www.linkedin.com/company/amazon/"
}
for name, url in suggested_urls.items():
if st.button(f"π’ {name}", key=name, use_container_width=True):
st.session_state.current_url = url
st.rerun()
# Extract button
if st.button("π Extract & Analyze", type="primary", use_container_width=True):
url_to_use = linkedin_url.strip() or st.session_state.current_url
if not url_to_use:
st.warning("β οΈ Please enter a LinkedIn URL")
elif not url_to_use.startswith('https://www.linkedin.com/'):
st.error("β Please enter a valid LinkedIn URL")
else:
st.session_state.processing = True
with st.spinner("π Extracting and analyzing data..."):
extracted_data = extract_linkedin_data(url_to_use, data_type)
if extracted_data.get("status") == "success":
st.session_state.extracted_data = extracted_data
st.session_state.current_url = url_to_use
# Process for AI
vectorstore, chunks = process_extracted_data(extracted_data)
if vectorstore:
st.session_state.vectorstore = vectorstore
st.session_state.chatbot = create_chatbot(vectorstore)
st.session_state.chat_history = []
st.success(f"β
Successfully processed {len(chunks)} content chunks!")
st.balloons()
else:
st.error("β Failed to process data for AI analysis")
else:
error_msg = extracted_data.get("error", "Unknown error occurred")
st.error(f"β Extraction failed: {error_msg}")
st.session_state.processing = False
# Chat management
if st.session_state.chatbot and st.session_state.extracted_data:
st.markdown("---")
st.subheader("π¬ Chat Management")
if st.button("ποΈ Clear Chat History", type="secondary", use_container_width=True):
clear_chat_history()
# Main content area
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("### π Extraction Results")
if st.session_state.processing:
st.info("π Processing LinkedIn data...")
elif st.session_state.extracted_data:
data = st.session_state.extracted_data
page_info = data['page_info']
content_blocks = data['content_blocks']
st.success("β
Extraction Complete")
# Display metrics
display_metrics(data)
# Display page info
st.markdown("#### π·οΈ Page Information")
st.write(f"**Title:** {page_info['title']}")
st.write(f"**URL:** {page_info['url']}")
st.write(f"**Data Type:** {data['data_type'].title()}")
st.write(f"**Content Blocks:** {len(content_blocks)}")
st.write(f"**Extraction Time:** {data['extraction_time']}")
# Display sample content
st.markdown("#### π Sample Content")
for i, block in enumerate(content_blocks[:3]):
with st.expander(f"Content Block {i+1} ({len(block.split())} words)"):
st.write(block)
if len(content_blocks) > 3:
st.info(f"π And {len(content_blocks) - 3} more content blocks...")
else:
st.info("""
π **Welcome to LinkedIn AI Analyzer!**
**Powered by Mistral 7B AI**
**To get started:**
1. Select content type
2. Enter a LinkedIn URL or click a suggested company
3. Click "Extract & Analyze"
4. Chat with AI about the extracted content
**Supported URLs:**
- π€ Public Profiles
- π’ Company Pages
- π Public Posts
**AI Features:**
- Smart content analysis
- Conversational chat
- Data insights
- Content summarization
""")
with col2:
st.markdown("### π¬ AI Chat Analysis")
if st.session_state.chatbot and st.session_state.extracted_data:
# Display chat history
for i, chat in enumerate(st.session_state.chat_history):
if chat["role"] == "user":
st.markdown(f"**π€ You:** {chat['content']}")
elif chat["role"] == "assistant":
st.markdown(f"**π€ AI:** {chat['content']}")
# Chat input
user_input = st.chat_input("Ask about the LinkedIn data...")
if user_input:
# Add user message
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Generate AI response
with st.spinner("π€ Mistral AI is analyzing..."):
try:
response = st.session_state.chatbot.invoke({"question": user_input})
answer = response.get("answer", "I couldn't generate a response based on the available data.")
st.session_state.chat_history.append({"role": "assistant", "content": answer})
st.rerun()
except Exception as e:
error_msg = f"β Error generating response: {str(e)}"
st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
st.rerun()
# Suggested questions
if not st.session_state.chat_history:
st.markdown("#### π‘ Suggested Questions")
suggestions = [
"Summarize the main information from this page",
"What are the key highlights or achievements?",
"Analyze the business or professional focus",
"What insights can you extract from this content?",
"Provide a comprehensive overview"
]
for suggestion in suggestions:
if st.button(suggestion, key=f"suggest_{suggestion}", use_container_width=True):
st.info(f"π‘ Try asking: '{suggestion}'")
elif st.session_state.extracted_data:
st.info("π¬ Start a conversation with the AI assistant")
else:
st.info("π Extract LinkedIn data to enable AI analysis")
# Features section
st.markdown("---")
st.markdown("### π Powered by Mistral 7B AI")
feature_cols = st.columns(3)
with feature_cols[0]:
st.markdown("""
**π€ Advanced AI**
- Mistral 7B Instruct model
- Intelligent text analysis
- Contextual understanding
""")
with feature_cols[1]:
st.markdown("""
**π¬ Smart Chat**
- Conversational memory
- Relevant responses
- Data-driven insights
""")
with feature_cols[2]:
st.markdown("""
**π Deep Analysis**
- Content summarization
- Pattern recognition
- Professional insights
""")
if __name__ == "__main__":
main() |