Spaces:
Runtime error
Runtime error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +367 -1
src/streamlit_app.py
CHANGED
|
@@ -43,6 +43,8 @@ st.altair_chart(alt.Chart(df, height=700, width=700)
|
|
| 43 |
|
| 44 |
'''
|
| 45 |
|
|
|
|
|
|
|
| 46 |
import streamlit as st
|
| 47 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 48 |
import torch
|
|
@@ -75,4 +77,368 @@ if st.button("ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡ") and text.strip
|
|
| 75 |
|
| 76 |
labels = ["π Negative", "π Neutral", "π Positive"]
|
| 77 |
for label, prob in zip(labels, probs):
|
| 78 |
-
st.write(f"**{label}:** {prob.item():.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
'''
|
| 45 |
|
| 46 |
+
|
| 47 |
+
'''
|
| 48 |
import streamlit as st
|
| 49 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 50 |
import torch
|
|
|
|
| 77 |
|
| 78 |
labels = ["π Negative", "π Neutral", "π Positive"]
|
| 79 |
for label, prob in zip(labels, probs):
|
| 80 |
+
st.write(f"**{label}:** {prob.item():.3f}")
|
| 81 |
+
|
| 82 |
+
'''
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
import streamlit as st
|
| 86 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 87 |
+
import torch
|
| 88 |
+
import torch.nn.functional as F
|
| 89 |
+
import os
|
| 90 |
+
import pandas as pd
|
| 91 |
+
import plotly.express as px
|
| 92 |
+
import plotly.graph_objects as go
|
| 93 |
+
from datetime import datetime
|
| 94 |
+
import re
|
| 95 |
+
|
| 96 |
+
# Page configuration
|
| 97 |
+
st.set_page_config(
|
| 98 |
+
page_title="FinBERT Sentiment Analyzer",
|
| 99 |
+
page_icon="π°",
|
| 100 |
+
layout="wide",
|
| 101 |
+
initial_sidebar_state="expanded"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Custom CSS for better styling
|
| 105 |
+
st.markdown("""
|
| 106 |
+
<style>
|
| 107 |
+
.main-header {
|
| 108 |
+
text-align: center;
|
| 109 |
+
color: #1f77b4;
|
| 110 |
+
margin-bottom: 2rem;
|
| 111 |
+
}
|
| 112 |
+
.sentiment-card {
|
| 113 |
+
padding: 1rem;
|
| 114 |
+
border-radius: 10px;
|
| 115 |
+
margin: 0.5rem 0;
|
| 116 |
+
text-align: center;
|
| 117 |
+
}
|
| 118 |
+
.negative { background-color: #ffebee; border-left: 5px solid #f44336; }
|
| 119 |
+
.neutral { background-color: #f3e5f5; border-left: 5px solid #9c27b0; }
|
| 120 |
+
.positive { background-color: #e8f5e8; border-left: 5px solid #4caf50; }
|
| 121 |
+
.metric-container {
|
| 122 |
+
background-color: #f8f9fa;
|
| 123 |
+
padding: 1rem;
|
| 124 |
+
border-radius: 10px;
|
| 125 |
+
margin: 1rem 0;
|
| 126 |
+
}
|
| 127 |
+
</style>
|
| 128 |
+
""", unsafe_allow_html=True)
|
| 129 |
+
|
| 130 |
+
st.markdown('<h1 class="main-header">π° FinBERT: Financial Sentiment Analysis</h1>', unsafe_allow_html=True)
|
| 131 |
+
|
| 132 |
+
# Sidebar
|
| 133 |
+
with st.sidebar:
|
| 134 |
+
st.header("βΉοΈ About")
|
| 135 |
+
st.markdown("""
|
| 136 |
+
**Model:** `yiyanghkust/finbert-tone`
|
| 137 |
+
Trained specifically on financial texts for accurate sentiment analysis of:
|
| 138 |
+
- Financial news
|
| 139 |
+
- Earnings reports
|
| 140 |
+
- Market analysis
|
| 141 |
+
- Investment research
|
| 142 |
+
""")
|
| 143 |
+
|
| 144 |
+
st.header("βοΈ Settings")
|
| 145 |
+
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, help="Minimum confidence for sentiment classification")
|
| 146 |
+
show_probabilities = st.checkbox("Show All Probabilities", value=True)
|
| 147 |
+
batch_analysis = st.checkbox("Enable Batch Analysis", help="Analyze multiple texts at once")
|
| 148 |
+
|
| 149 |
+
@st.cache_resource(show_spinner=False)
|
| 150 |
+
def load_model():
|
| 151 |
+
"""Load FinBERT model and tokenizer with error handling"""
|
| 152 |
+
try:
|
| 153 |
+
cache_dir = "/tmp/huggingface"
|
| 154 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 155 |
+
|
| 156 |
+
with st.spinner("Loading FinBERT model... This may take a moment."):
|
| 157 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 158 |
+
"yiyanghkust/finbert-tone",
|
| 159 |
+
cache_dir=cache_dir
|
| 160 |
+
)
|
| 161 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 162 |
+
"yiyanghkust/finbert-tone",
|
| 163 |
+
cache_dir=cache_dir
|
| 164 |
+
)
|
| 165 |
+
return tokenizer, model, None
|
| 166 |
+
except Exception as e:
|
| 167 |
+
return None, None, str(e)
|
| 168 |
+
|
| 169 |
+
def analyze_sentiment(text, tokenizer, model):
|
| 170 |
+
"""Analyze sentiment with error handling and additional metrics"""
|
| 171 |
+
try:
|
| 172 |
+
# Preprocess text
|
| 173 |
+
text = re.sub(r'\s+', ' ', text.strip())
|
| 174 |
+
|
| 175 |
+
inputs = tokenizer(
|
| 176 |
+
text,
|
| 177 |
+
return_tensors="pt",
|
| 178 |
+
truncation=True,
|
| 179 |
+
padding=True,
|
| 180 |
+
max_length=512
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
with torch.no_grad():
|
| 184 |
+
outputs = model(**inputs)
|
| 185 |
+
probs = F.softmax(outputs.logits, dim=1).squeeze()
|
| 186 |
+
|
| 187 |
+
labels = ["Negative", "Neutral", "Positive"]
|
| 188 |
+
sentiment_scores = {label: prob.item() for label, prob in zip(labels, probs)}
|
| 189 |
+
|
| 190 |
+
# Determine primary sentiment
|
| 191 |
+
max_prob = max(sentiment_scores.values())
|
| 192 |
+
primary_sentiment = max(sentiment_scores, key=sentiment_scores.get)
|
| 193 |
+
|
| 194 |
+
return sentiment_scores, primary_sentiment, max_prob, None
|
| 195 |
+
except Exception as e:
|
| 196 |
+
return None, None, None, str(e)
|
| 197 |
+
|
| 198 |
+
def create_sentiment_chart(sentiment_scores):
|
| 199 |
+
"""Create an interactive sentiment visualization"""
|
| 200 |
+
labels = list(sentiment_scores.keys())
|
| 201 |
+
values = list(sentiment_scores.values())
|
| 202 |
+
colors = ['#f44336', '#9c27b0', '#4caf50']
|
| 203 |
+
|
| 204 |
+
fig = go.Figure(data=[
|
| 205 |
+
go.Bar(
|
| 206 |
+
x=labels,
|
| 207 |
+
y=values,
|
| 208 |
+
marker_color=colors,
|
| 209 |
+
text=[f'{v:.3f}' for v in values],
|
| 210 |
+
textposition='auto',
|
| 211 |
+
)
|
| 212 |
+
])
|
| 213 |
+
|
| 214 |
+
fig.update_layout(
|
| 215 |
+
title="Sentiment Analysis Results",
|
| 216 |
+
xaxis_title="Sentiment",
|
| 217 |
+
yaxis_title="Confidence Score",
|
| 218 |
+
yaxis=dict(range=[0, 1]),
|
| 219 |
+
height=400,
|
| 220 |
+
showlegend=False
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
return fig
|
| 224 |
+
|
| 225 |
+
# Load model
|
| 226 |
+
tokenizer, model, error = load_model()
|
| 227 |
+
|
| 228 |
+
if error:
|
| 229 |
+
st.error(f"Failed to load model: {error}")
|
| 230 |
+
st.stop()
|
| 231 |
+
|
| 232 |
+
if tokenizer and model:
|
| 233 |
+
st.success("β
FinBERT model loaded successfully!")
|
| 234 |
+
|
| 235 |
+
# Main analysis interface
|
| 236 |
+
if not batch_analysis:
|
| 237 |
+
st.header("π Single Text Analysis")
|
| 238 |
+
text = st.text_area(
|
| 239 |
+
"Enter financial news, report, or analysis:",
|
| 240 |
+
height=150,
|
| 241 |
+
placeholder="Example: The company reported strong quarterly earnings with revenue growth of 15% year-over-year..."
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
| 245 |
+
with col1:
|
| 246 |
+
analyze_button = st.button("π Analyze Sentiment", type="primary")
|
| 247 |
+
with col2:
|
| 248 |
+
clear_button = st.button("ποΈ Clear")
|
| 249 |
+
|
| 250 |
+
if clear_button:
|
| 251 |
+
st.rerun()
|
| 252 |
+
|
| 253 |
+
if analyze_button and text.strip():
|
| 254 |
+
with st.spinner("Analyzing sentiment..."):
|
| 255 |
+
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
|
| 256 |
+
|
| 257 |
+
if error:
|
| 258 |
+
st.error(f"Analysis failed: {error}")
|
| 259 |
+
else:
|
| 260 |
+
# Results section
|
| 261 |
+
st.header("π Analysis Results")
|
| 262 |
+
|
| 263 |
+
# Primary sentiment with confidence
|
| 264 |
+
col1, col2, col3 = st.columns(3)
|
| 265 |
+
|
| 266 |
+
sentiment_emojis = {"Negative": "π", "Neutral": "π", "Positive": "π"}
|
| 267 |
+
sentiment_colors = {"Negative": "red", "Neutral": "gray", "Positive": "green"}
|
| 268 |
+
|
| 269 |
+
with col1:
|
| 270 |
+
st.metric(
|
| 271 |
+
"Primary Sentiment",
|
| 272 |
+
f"{sentiment_emojis[primary_sentiment]} {primary_sentiment}",
|
| 273 |
+
delta=f"{confidence:.1%} confidence"
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
with col2:
|
| 277 |
+
st.metric(
|
| 278 |
+
"Text Length",
|
| 279 |
+
f"{len(text)} characters",
|
| 280 |
+
delta=f"{len(text.split())} words"
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
with col3:
|
| 284 |
+
reliability = "High" if confidence > 0.7 else "Medium" if confidence > 0.5 else "Low"
|
| 285 |
+
st.metric("Reliability", reliability)
|
| 286 |
+
|
| 287 |
+
# Detailed probabilities
|
| 288 |
+
if show_probabilities:
|
| 289 |
+
st.subheader("Detailed Sentiment Scores")
|
| 290 |
+
|
| 291 |
+
for sentiment, score in sentiment_scores.items():
|
| 292 |
+
emoji = sentiment_emojis[sentiment]
|
| 293 |
+
color = "negative" if sentiment == "Negative" else "neutral" if sentiment == "Neutral" else "positive"
|
| 294 |
+
|
| 295 |
+
st.markdown(f"""
|
| 296 |
+
<div class="sentiment-card {color}">
|
| 297 |
+
<h4>{emoji} {sentiment}</h4>
|
| 298 |
+
<h2>{score:.3f}</h2>
|
| 299 |
+
<div style="width: 100%; background-color: #ddd; border-radius: 25px;">
|
| 300 |
+
<div style="width: {score*100}%; height: 10px; background-color: {sentiment_colors[sentiment]}; border-radius: 25px;"></div>
|
| 301 |
+
</div>
|
| 302 |
+
</div>
|
| 303 |
+
""", unsafe_allow_html=True)
|
| 304 |
+
|
| 305 |
+
# Visualization
|
| 306 |
+
st.subheader("π Sentiment Visualization")
|
| 307 |
+
fig = create_sentiment_chart(sentiment_scores)
|
| 308 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 309 |
+
|
| 310 |
+
else:
|
| 311 |
+
# Batch analysis mode
|
| 312 |
+
st.header("π Batch Analysis")
|
| 313 |
+
|
| 314 |
+
# Option to upload file or enter multiple texts
|
| 315 |
+
analysis_method = st.radio(
|
| 316 |
+
"Choose analysis method:",
|
| 317 |
+
["Enter multiple texts", "Upload CSV file"]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
if analysis_method == "Enter multiple texts":
|
| 321 |
+
texts_input = st.text_area(
|
| 322 |
+
"Enter multiple texts (one per line):",
|
| 323 |
+
height=200,
|
| 324 |
+
placeholder="Text 1: Company reports strong earnings...\nText 2: Market volatility increases...\nText 3: New regulations impact sector..."
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
if st.button("π Analyze All Texts") and texts_input.strip():
|
| 328 |
+
texts = [text.strip() for text in texts_input.split('\n') if text.strip()]
|
| 329 |
+
|
| 330 |
+
if texts:
|
| 331 |
+
results = []
|
| 332 |
+
progress_bar = st.progress(0)
|
| 333 |
+
|
| 334 |
+
for i, text in enumerate(texts):
|
| 335 |
+
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
|
| 336 |
+
|
| 337 |
+
if not error:
|
| 338 |
+
results.append({
|
| 339 |
+
'Text': text[:100] + '...' if len(text) > 100 else text,
|
| 340 |
+
'Primary Sentiment': primary_sentiment,
|
| 341 |
+
'Confidence': confidence,
|
| 342 |
+
'Negative': sentiment_scores['Negative'],
|
| 343 |
+
'Neutral': sentiment_scores['Neutral'],
|
| 344 |
+
'Positive': sentiment_scores['Positive']
|
| 345 |
+
})
|
| 346 |
+
|
| 347 |
+
progress_bar.progress((i + 1) / len(texts))
|
| 348 |
+
|
| 349 |
+
if results:
|
| 350 |
+
df = pd.DataFrame(results)
|
| 351 |
+
|
| 352 |
+
# Summary statistics
|
| 353 |
+
st.subheader("π Batch Analysis Summary")
|
| 354 |
+
col1, col2, col3 = st.columns(3)
|
| 355 |
+
|
| 356 |
+
with col1:
|
| 357 |
+
positive_count = len(df[df['Primary Sentiment'] == 'Positive'])
|
| 358 |
+
st.metric("Positive Texts", positive_count, f"{positive_count/len(df)*100:.1f}%")
|
| 359 |
+
|
| 360 |
+
with col2:
|
| 361 |
+
neutral_count = len(df[df['Primary Sentiment'] == 'Neutral'])
|
| 362 |
+
st.metric("Neutral Texts", neutral_count, f"{neutral_count/len(df)*100:.1f}%")
|
| 363 |
+
|
| 364 |
+
with col3:
|
| 365 |
+
negative_count = len(df[df['Primary Sentiment'] == 'Negative'])
|
| 366 |
+
st.metric("Negative Texts", negative_count, f"{negative_count/len(df)*100:.1f}%")
|
| 367 |
+
|
| 368 |
+
# Results table
|
| 369 |
+
st.subheader("π Detailed Results")
|
| 370 |
+
st.dataframe(df, use_container_width=True)
|
| 371 |
+
|
| 372 |
+
# Download results
|
| 373 |
+
csv = df.to_csv(index=False)
|
| 374 |
+
st.download_button(
|
| 375 |
+
"π₯ Download Results (CSV)",
|
| 376 |
+
csv,
|
| 377 |
+
f"sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 378 |
+
"text/csv"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
elif analysis_method == "Upload CSV file":
|
| 382 |
+
uploaded_file = st.file_uploader(
|
| 383 |
+
"Choose a CSV file with a 'text' column",
|
| 384 |
+
type=['csv']
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
if uploaded_file is not None:
|
| 388 |
+
try:
|
| 389 |
+
df = pd.read_csv(uploaded_file)
|
| 390 |
+
|
| 391 |
+
if 'text' not in df.columns:
|
| 392 |
+
st.error("CSV file must contain a 'text' column")
|
| 393 |
+
else:
|
| 394 |
+
st.write(f"Loaded {len(df)} texts from CSV file")
|
| 395 |
+
st.dataframe(df.head(), use_container_width=True)
|
| 396 |
+
|
| 397 |
+
if st.button("π Analyze CSV Data"):
|
| 398 |
+
results = []
|
| 399 |
+
progress_bar = st.progress(0)
|
| 400 |
+
|
| 401 |
+
for i, row in df.iterrows():
|
| 402 |
+
text = str(row['text'])
|
| 403 |
+
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
|
| 404 |
+
|
| 405 |
+
if not error:
|
| 406 |
+
result_row = row.to_dict()
|
| 407 |
+
result_row.update({
|
| 408 |
+
'Primary Sentiment': primary_sentiment,
|
| 409 |
+
'Confidence': confidence,
|
| 410 |
+
'Negative Score': sentiment_scores['Negative'],
|
| 411 |
+
'Neutral Score': sentiment_scores['Neutral'],
|
| 412 |
+
'Positive Score': sentiment_scores['Positive']
|
| 413 |
+
})
|
| 414 |
+
results.append(result_row)
|
| 415 |
+
|
| 416 |
+
progress_bar.progress((i + 1) / len(df))
|
| 417 |
+
|
| 418 |
+
if results:
|
| 419 |
+
results_df = pd.DataFrame(results)
|
| 420 |
+
|
| 421 |
+
# Display results
|
| 422 |
+
st.subheader("π Analysis Results")
|
| 423 |
+
st.dataframe(results_df, use_container_width=True)
|
| 424 |
+
|
| 425 |
+
# Download enhanced results
|
| 426 |
+
csv = results_df.to_csv(index=False)
|
| 427 |
+
st.download_button(
|
| 428 |
+
"π₯ Download Enhanced Results (CSV)",
|
| 429 |
+
csv,
|
| 430 |
+
f"enhanced_sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 431 |
+
"text/csv"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
except Exception as e:
|
| 435 |
+
st.error(f"Error processing CSV file: {str(e)}")
|
| 436 |
+
|
| 437 |
+
# Footer
|
| 438 |
+
st.markdown("---")
|
| 439 |
+
st.markdown("""
|
| 440 |
+
<div style='text-align: center; color: #666; margin-top: 2rem;'>
|
| 441 |
+
<p>π‘ <strong>Tip:</strong> For best results, use complete sentences and financial context</p>
|
| 442 |
+
<p>Built with Streamlit β’ Powered by FinBERT</p>
|
| 443 |
+
</div>
|
| 444 |
+
""", unsafe_allow_html=True)
|