Spaces:
Sleeping
Sleeping
Upload Colony_Analyzer_AI2_HF.py
Browse files- Colony_Analyzer_AI2_HF.py +74 -23
Colony_Analyzer_AI2_HF.py
CHANGED
|
@@ -8,37 +8,85 @@ Created on Thu Mar 20 14:23:27 2025
|
|
| 8 |
|
| 9 |
import os
|
| 10 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
#this is the huggingface version
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
img_map = {}
|
| 15 |
width, height = img.size
|
| 16 |
-
i_num = height //
|
| 17 |
-
j_num = width //
|
| 18 |
count = 1
|
| 19 |
for i in range(i_num):
|
| 20 |
for j in range(j_num):
|
| 21 |
-
cropped_img = img.crop((
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
img_map[count] = cropped_img
|
| 23 |
-
#print(type(cropped_img))
|
| 24 |
count += 1
|
| 25 |
-
return img_map
|
| 26 |
-
|
| 27 |
import numpy as np
|
| 28 |
|
| 29 |
-
|
| 30 |
-
rows = [
|
| 31 |
-
np.hstack([img_map[1], img_map[2], img_map[3], img_map[4]]), # First row (images 0 to 3)
|
| 32 |
-
np.hstack([img_map[5], img_map[6], img_map[7], img_map[8]]), # Second row (images 4 to 7)
|
| 33 |
-
np.hstack([img_map[9], img_map[10], img_map[11], img_map[12]]) # Third row (images 8 to 11)
|
| 34 |
-
]
|
| 35 |
-
# Stack rows vertically
|
| 36 |
-
return(np.vstack(rows))
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
from PIL import Image
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
import matplotlib.pyplot as plt
|
|
@@ -214,21 +262,24 @@ def main(args):
|
|
| 214 |
min_circ = args[2]
|
| 215 |
do_necrosis = args[3]
|
| 216 |
colonies = {}
|
| 217 |
-
img_map = cut_img(args[0])
|
| 218 |
for z in img_map:
|
| 219 |
img_map[z] = eval_img(img_map[z])
|
| 220 |
del z
|
| 221 |
-
p = stitch(img_map)
|
| 222 |
colonies = analyze_colonies(p, min_size, min_circ, np.array(args[0]))
|
| 223 |
if len(colonies) <=0:
|
|
|
|
| 224 |
caption = np.ones((150, 2048, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 225 |
cv2.putText(caption, 'No colonies detected.', (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 226 |
-
cv2.imwrite('results.png', np.vstack((
|
| 227 |
colonies = pd.DataFrame({"Colony Number":[], 'Colony volume':[], "colony_area":[],'mean_pixel_value':[], "centroid":[], "necrotic_area":[],"percent_necrotic":[]})
|
| 228 |
with pd.ExcelWriter('results.xlsx') as writer:
|
| 229 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 230 |
-
return(np.vstack((
|
| 231 |
-
|
|
|
|
|
|
|
| 232 |
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
| 233 |
#print(colonies.to_string())
|
| 234 |
|
|
|
|
| 8 |
|
| 9 |
import os
|
| 10 |
import cv2
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def pad(img_np, tw=2048, th=1536):
|
| 15 |
+
"""
|
| 16 |
+
Pads a numpy image (grayscale or RGB) to 2048x1536 (width x height) with white pixels.
|
| 17 |
+
Pads at the bottom and right as needed.
|
| 18 |
+
"""
|
| 19 |
+
height, width = img_np.shape[:2]
|
| 20 |
+
pad_bottom = max(0, th - height)
|
| 21 |
+
pad_right = max(0, tw - width)
|
| 22 |
+
# Padding: (top, bottom, left, right)
|
| 23 |
+
if img_np.ndim == 3:
|
| 24 |
+
# Color image (H, W, 3)
|
| 25 |
+
border_value = [255, 255, 255]
|
| 26 |
+
else:
|
| 27 |
+
# Grayscale image (H, W)
|
| 28 |
+
border_value = 255
|
| 29 |
+
|
| 30 |
+
padded = cv2.copyMakeBorder(
|
| 31 |
+
img_np,
|
| 32 |
+
top=0, bottom=pad_bottom,
|
| 33 |
+
left=0, right=pad_right,
|
| 34 |
+
borderType=cv2.BORDER_CONSTANT,
|
| 35 |
+
value=border_value
|
| 36 |
+
)
|
| 37 |
+
return padded
|
| 38 |
+
|
| 39 |
|
| 40 |
#this is the huggingface version
|
| 41 |
+
import numpy as np
|
| 42 |
+
from PIL import Image
|
| 43 |
+
|
| 44 |
+
def cut_img(img, patch_size=512):
|
| 45 |
img_map = {}
|
| 46 |
width, height = img.size
|
| 47 |
+
i_num = height // patch_size
|
| 48 |
+
j_num = width // patch_size
|
| 49 |
count = 1
|
| 50 |
for i in range(i_num):
|
| 51 |
for j in range(j_num):
|
| 52 |
+
cropped_img = img.crop((
|
| 53 |
+
patch_size * j,
|
| 54 |
+
patch_size * i,
|
| 55 |
+
patch_size * (j + 1),
|
| 56 |
+
patch_size * (i + 1)
|
| 57 |
+
))
|
| 58 |
img_map[count] = cropped_img
|
|
|
|
| 59 |
count += 1
|
| 60 |
+
return img_map, i_num, j_num # Return rows and cols for stitching
|
|
|
|
| 61 |
import numpy as np
|
| 62 |
|
| 63 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
from PIL import Image
|
| 65 |
|
| 66 |
+
def stitch(img_map, i_num, j_num, min_width=2048, min_height=1536):
|
| 67 |
+
tiles = []
|
| 68 |
+
count = 1
|
| 69 |
+
for i in range(i_num):
|
| 70 |
+
row_tiles = []
|
| 71 |
+
for j in range(j_num):
|
| 72 |
+
tile = np.array(img_map[count])
|
| 73 |
+
row_tiles.append(tile)
|
| 74 |
+
count += 1
|
| 75 |
+
row_img = np.hstack(row_tiles)
|
| 76 |
+
tiles.append(row_img)
|
| 77 |
+
stitched = np.vstack(tiles)
|
| 78 |
+
|
| 79 |
+
# Pad the stitched image if it's less than min_width/min_height
|
| 80 |
+
h, w = stitched.shape[:2]
|
| 81 |
+
pad_h = max(0, min_height - h)
|
| 82 |
+
pad_w = max(0, min_width - w)
|
| 83 |
+
if pad_h > 0 or pad_w > 0:
|
| 84 |
+
# Pad as (top, bottom), (left, right), (channels)
|
| 85 |
+
if stitched.ndim == 3:
|
| 86 |
+
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
|
| 87 |
+
else:
|
| 88 |
+
stitched = np.pad(stitched, ((0, pad_h), (0, pad_w)), 'constant')
|
| 89 |
+
return stitched
|
| 90 |
|
| 91 |
|
| 92 |
import matplotlib.pyplot as plt
|
|
|
|
| 262 |
min_circ = args[2]
|
| 263 |
do_necrosis = args[3]
|
| 264 |
colonies = {}
|
| 265 |
+
img_map, i_num, j_num = cut_img(Image.fromarray(pad(np.array(args[0]),512,512)))
|
| 266 |
for z in img_map:
|
| 267 |
img_map[z] = eval_img(img_map[z])
|
| 268 |
del z
|
| 269 |
+
p = stitch(img_map, i_num, j_num)
|
| 270 |
colonies = analyze_colonies(p, min_size, min_circ, np.array(args[0]))
|
| 271 |
if len(colonies) <=0:
|
| 272 |
+
img = pad(np.array(args[0]))
|
| 273 |
caption = np.ones((150, 2048, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 274 |
cv2.putText(caption, 'No colonies detected.', (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 275 |
+
cv2.imwrite('results.png', np.vstack((img, caption)))
|
| 276 |
colonies = pd.DataFrame({"Colony Number":[], 'Colony volume':[], "colony_area":[],'mean_pixel_value':[], "centroid":[], "necrotic_area":[],"percent_necrotic":[]})
|
| 277 |
with pd.ExcelWriter('results.xlsx') as writer:
|
| 278 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 279 |
+
return(np.vstack((img, caption)), 'results.png', 'results.xlsx')
|
| 280 |
+
|
| 281 |
+
img =pad(np.array(args[0]))
|
| 282 |
+
|
| 283 |
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
| 284 |
#print(colonies.to_string())
|
| 285 |
|