Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Colony_Analyzer_AI2_HF.py +28 -63
- Colony_Analyzer_AI_zstack2_HF.py +21 -7
- app.py +13 -12
Colony_Analyzer_AI2_HF.py
CHANGED
|
@@ -170,7 +170,7 @@ def contours_overlap_using_mask(contour1, contour2, image_shape=(1536, 2048)):
|
|
| 170 |
|
| 171 |
return np.any(overlap)
|
| 172 |
|
| 173 |
-
def analyze_colonies(mask, size_cutoff, circ_cutoff):
|
| 174 |
colonies = find_colonies(mask, size_cutoff, circ_cutoff)
|
| 175 |
necrosis = find_necrosis(mask)
|
| 176 |
|
|
@@ -181,7 +181,9 @@ def analyze_colonies(mask, size_cutoff, circ_cutoff):
|
|
| 181 |
centroid = compute_centroid(colony)
|
| 182 |
if colony_area <= 50:
|
| 183 |
continue
|
| 184 |
-
|
|
|
|
|
|
|
| 185 |
# Check if any necrosis contour is inside the colony
|
| 186 |
necrosis_area = 0
|
| 187 |
nec_list =[]
|
|
@@ -194,80 +196,30 @@ def analyze_colonies(mask, size_cutoff, circ_cutoff):
|
|
| 194 |
|
| 195 |
data.append({
|
| 196 |
"colony_area": colony_area,
|
| 197 |
-
"
|
| 198 |
"centroid": centroid,
|
| 199 |
-
"
|
| 200 |
"contour": colony,
|
| 201 |
-
"nec_contours": nec_list
|
|
|
|
| 202 |
})
|
| 203 |
|
| 204 |
# Convert results to a DataFrame
|
| 205 |
df = pd.DataFrame(data)
|
| 206 |
df.index = range(1,len(df.index)+1)
|
| 207 |
return(df)
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
def contour_overlap(contour1, contour2, centroid1, centroid2, area1, area2, centroid_thresh=25, area_thresh = 85, img_shape = (1536, 2048)):
|
| 211 |
-
"""
|
| 212 |
-
Determines the overlap between two contours.
|
| 213 |
-
Returns:
|
| 214 |
-
0: No overlap
|
| 215 |
-
1: Overlap but does not meet strict conditions
|
| 216 |
-
2: Overlap >= 80% of the larger contour and centroids are close
|
| 217 |
-
"""
|
| 218 |
-
# Create blank images
|
| 219 |
-
img1 = np.zeros(img_shape, dtype=np.uint8)
|
| 220 |
-
img2 = np.zeros(img_shape, dtype=np.uint8)
|
| 221 |
-
|
| 222 |
-
# Draw filled contours
|
| 223 |
-
cv2.drawContours(img1, [contour1], -1, 255, thickness=cv2.FILLED)
|
| 224 |
-
cv2.drawContours(img2, [contour2], -1, 255, thickness=cv2.FILLED)
|
| 225 |
-
|
| 226 |
-
# Compute overlap
|
| 227 |
-
intersection = cv2.bitwise_and(img1, img2)
|
| 228 |
-
intersection_area = np.count_nonzero(intersection)
|
| 229 |
-
|
| 230 |
-
if intersection_area == 0:
|
| 231 |
-
return 0 # No overlap
|
| 232 |
-
|
| 233 |
-
# Compute centroid distance
|
| 234 |
-
centroid_distance = float(np.sqrt(abs(centroid1[0]-centroid2[0])**2 + abs(centroid1[1]-centroid2[1])**2))
|
| 235 |
-
# Check percentage overlap relative to the larger contour
|
| 236 |
-
overlap_ratio = intersection_area/max(area1, area2)
|
| 237 |
-
|
| 238 |
-
if overlap_ratio >= area_thresh and centroid_distance <= centroid_thresh:
|
| 239 |
-
if area1 > area2:
|
| 240 |
-
return(2)
|
| 241 |
-
else:
|
| 242 |
-
return(3)
|
| 243 |
-
else:
|
| 244 |
-
return 1 # Some overlap but not meeting strict criteria
|
| 245 |
-
|
| 246 |
-
def compare_frames(frame1, frame2):
|
| 247 |
-
for i in range(1, len(frame1)+1):
|
| 248 |
-
for j in range(1, len(frame2)+1):
|
| 249 |
-
temp = contour_overlap(frame1.loc[i, "contour"], frame2.loc[j, "contour"], frame1.loc[i, "centroid"], frame2.loc[j, "centroid"], frame1.loc[i, "colony_area"], frame2.loc[j, "colony_area"])
|
| 250 |
-
if temp ==2:
|
| 251 |
-
frame2.loc[j,"exclude"] = True
|
| 252 |
-
elif temp ==3:
|
| 253 |
-
frame1.loc[j, "exclude"] = True
|
| 254 |
-
break
|
| 255 |
-
frame1 = frame1[frame1["exclude"]==False]
|
| 256 |
-
frame2 = frame2[frame2["exclude"]==False]
|
| 257 |
-
df = pd.concat([frame1, frame2], axis=0)
|
| 258 |
-
df.index = range(1,len(df.index)+1)
|
| 259 |
-
return(df)
|
| 260 |
|
| 261 |
def main(args):
|
| 262 |
min_size = args[1]
|
| 263 |
min_circ = args[2]
|
|
|
|
| 264 |
colonies = {}
|
| 265 |
img_map = cut_img(args[0])
|
| 266 |
for z in img_map:
|
| 267 |
img_map[z] = eval_img(img_map[z])
|
| 268 |
del z
|
| 269 |
p = stitch(img_map)
|
| 270 |
-
colonies = analyze_colonies(p, min_size, min_circ)
|
| 271 |
|
| 272 |
img = np.array(args[0])
|
| 273 |
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
|
@@ -279,7 +231,8 @@ def main(args):
|
|
| 279 |
|
| 280 |
for i in range(len(colonies)):
|
| 281 |
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
|
| 282 |
-
|
|
|
|
| 283 |
coords = list(list(colonies["centroid"])[i])
|
| 284 |
if coords[0] > 1950:
|
| 285 |
#if a colony is too close to the right edge, makes the label move to left
|
|
@@ -293,15 +246,27 @@ def main(args):
|
|
| 293 |
total_area_dark = sum(colonies['necrosis_area'])
|
| 294 |
total_area_light = sum(colonies['colony_area'])
|
| 295 |
ratio = total_area_dark/(abs(total_area_light)+1)
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
Parameters = pd.DataFrame({"Minimum colony size in pixels":[min_size], "Minimum colony circularity":[min_circ]})
|
| 299 |
with pd.ExcelWriter('results.xlsx') as writer:
|
| 300 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 301 |
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
|
| 302 |
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
|
| 307 |
cv2.imwrite('results.png', np.vstack((img, caption)))
|
|
|
|
| 170 |
|
| 171 |
return np.any(overlap)
|
| 172 |
|
| 173 |
+
def analyze_colonies(mask, size_cutoff, circ_cutoff, img):
|
| 174 |
colonies = find_colonies(mask, size_cutoff, circ_cutoff)
|
| 175 |
necrosis = find_necrosis(mask)
|
| 176 |
|
|
|
|
| 181 |
centroid = compute_centroid(colony)
|
| 182 |
if colony_area <= 50:
|
| 183 |
continue
|
| 184 |
+
mask = np.zeros(img.shape, np.uint8)
|
| 185 |
+
cv2.drawContours(mask, [colony], -1, 255, cv2.FILLED)
|
| 186 |
+
pix = img[mask == 255]
|
| 187 |
# Check if any necrosis contour is inside the colony
|
| 188 |
necrosis_area = 0
|
| 189 |
nec_list =[]
|
|
|
|
| 196 |
|
| 197 |
data.append({
|
| 198 |
"colony_area": colony_area,
|
| 199 |
+
"necrotic_area": necrosis_area,
|
| 200 |
"centroid": centroid,
|
| 201 |
+
"percent_necrotic": necrosis_area/colony_area,
|
| 202 |
"contour": colony,
|
| 203 |
+
"nec_contours": nec_list,
|
| 204 |
+
'mean_pixel_value':np.mean(pix)
|
| 205 |
})
|
| 206 |
|
| 207 |
# Convert results to a DataFrame
|
| 208 |
df = pd.DataFrame(data)
|
| 209 |
df.index = range(1,len(df.index)+1)
|
| 210 |
return(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
def main(args):
|
| 213 |
min_size = args[1]
|
| 214 |
min_circ = args[2]
|
| 215 |
+
do_necrosis = args[3]
|
| 216 |
colonies = {}
|
| 217 |
img_map = cut_img(args[0])
|
| 218 |
for z in img_map:
|
| 219 |
img_map[z] = eval_img(img_map[z])
|
| 220 |
del z
|
| 221 |
p = stitch(img_map)
|
| 222 |
+
colonies = analyze_colonies(p, min_size, min_circ, np.array(args[0]))
|
| 223 |
|
| 224 |
img = np.array(args[0])
|
| 225 |
img = cv2.copyMakeBorder(img,top=0, bottom=10,left=0,right=10, borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
|
|
|
| 231 |
|
| 232 |
for i in range(len(colonies)):
|
| 233 |
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
|
| 234 |
+
if do_necrosis == True:
|
| 235 |
+
cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
|
| 236 |
coords = list(list(colonies["centroid"])[i])
|
| 237 |
if coords[0] > 1950:
|
| 238 |
#if a colony is too close to the right edge, makes the label move to left
|
|
|
|
| 246 |
total_area_dark = sum(colonies['necrosis_area'])
|
| 247 |
total_area_light = sum(colonies['colony_area'])
|
| 248 |
ratio = total_area_dark/(abs(total_area_light)+1)
|
| 249 |
+
radii = [np.sqrt(x/3.1415) for x in list(colonies['colony_area'])]
|
| 250 |
+
volumes = [4.189*(x**3) for x in radii]
|
| 251 |
+
colonies['Colony volume'] = volumes
|
| 252 |
+
del radii, volumes
|
| 253 |
+
meanpix = sum(colonies['mean_pixel_value'] * colonies['colony_area'])/total_area_light
|
| 254 |
+
colonies.loc[len(colonies)+1] = ["Total", total_area_light, total_area_dark, None, ratio, meanpix, sum(colonies['Colony volume'])]
|
| 255 |
+
del meanpix
|
| 256 |
+
colonies = colonies[["Colony Number", 'Colony volume', "colony_area",'mean_pixel_value', "centroid", "necrotic_area","percent_necrotic"]]
|
| 257 |
+
if do_necrosis == False:
|
| 258 |
+
colonies = colonies.drop('necrotic_area', axis=1)
|
| 259 |
+
colonies = colonies.drop('percent_necrotic', axis=1)
|
| 260 |
Parameters = pd.DataFrame({"Minimum colony size in pixels":[min_size], "Minimum colony circularity":[min_circ]})
|
| 261 |
with pd.ExcelWriter('results.xlsx') as writer:
|
| 262 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 263 |
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
|
| 264 |
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 265 |
+
if do_necrosis == True:
|
| 266 |
+
cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 267 |
+
else:
|
| 268 |
+
cv2.putText(caption, "Total area: "+str(total_area_light), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 269 |
+
cv2.putText(caption, "Total number of colonies: "+str(len(colonies)-1), (40, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 270 |
|
| 271 |
|
| 272 |
cv2.imwrite('results.png', np.vstack((img, caption)))
|
Colony_Analyzer_AI_zstack2_HF.py
CHANGED
|
@@ -177,9 +177,9 @@ def analyze_colonies(mask, size_cutoff, circ_cutoff):
|
|
| 177 |
|
| 178 |
data.append({
|
| 179 |
"colony_area": colony_area,
|
| 180 |
-
"
|
| 181 |
"centroid": centroid,
|
| 182 |
-
"
|
| 183 |
"contour": colony,
|
| 184 |
"nec_contours": nec_list
|
| 185 |
})
|
|
@@ -247,6 +247,7 @@ def compare_frames(frame1, frame2):
|
|
| 247 |
def main(args):
|
| 248 |
min_size = args[1]
|
| 249 |
min_circ = args[2]
|
|
|
|
| 250 |
colonies = {}
|
| 251 |
files = args[0]
|
| 252 |
for idx,x in enumerate(files):
|
|
@@ -307,7 +308,8 @@ def main(args):
|
|
| 307 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 308 |
for i in range(len(colonies)):
|
| 309 |
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
|
| 310 |
-
|
|
|
|
| 311 |
coords = list(list(colonies["centroid"])[i])
|
| 312 |
if coords[0] > 1950:
|
| 313 |
#if a colony is too close to the right edge, makes the label move to left
|
|
@@ -350,15 +352,27 @@ def main(args):
|
|
| 350 |
total_area_dark = sum(colonies['necrosis_area'])
|
| 351 |
total_area_light = sum(colonies['colony_area'])
|
| 352 |
ratio = total_area_dark/(abs(total_area_light)+1)
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
Parameters = pd.DataFrame({"Minimum colony size in pixels":[min_size], "Minimum colony circularity":[min_circ]})
|
|
|
|
|
|
|
|
|
|
| 356 |
with pd.ExcelWriter("Group_analysis_results.xlsx") as writer:
|
| 357 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 358 |
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
|
| 359 |
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
| 362 |
print('img ndim: ' +str(img.ndim))
|
| 363 |
print('caption ndim: ' +str(caption.ndim))
|
| 364 |
|
|
|
|
| 177 |
|
| 178 |
data.append({
|
| 179 |
"colony_area": colony_area,
|
| 180 |
+
"necrotic_area": necrosis_area,
|
| 181 |
"centroid": centroid,
|
| 182 |
+
"percent_necrotic": necrosis_area/colony_area,
|
| 183 |
"contour": colony,
|
| 184 |
"nec_contours": nec_list
|
| 185 |
})
|
|
|
|
| 247 |
def main(args):
|
| 248 |
min_size = args[1]
|
| 249 |
min_circ = args[2]
|
| 250 |
+
do_necrosis = args[3]
|
| 251 |
colonies = {}
|
| 252 |
files = args[0]
|
| 253 |
for idx,x in enumerate(files):
|
|
|
|
| 308 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 309 |
for i in range(len(colonies)):
|
| 310 |
cv2.drawContours(img, [list(colonies["contour"])[i]], -1, (0, 255, 0), 2)
|
| 311 |
+
if do_necrosis == True:
|
| 312 |
+
cv2.drawContours(img, list(colonies['nec_contours'])[i], -1, (0, 0, 255), 2)
|
| 313 |
coords = list(list(colonies["centroid"])[i])
|
| 314 |
if coords[0] > 1950:
|
| 315 |
#if a colony is too close to the right edge, makes the label move to left
|
|
|
|
| 352 |
total_area_dark = sum(colonies['necrosis_area'])
|
| 353 |
total_area_light = sum(colonies['colony_area'])
|
| 354 |
ratio = total_area_dark/(abs(total_area_light)+1)
|
| 355 |
+
radii = [np.sqrt(x/3.1415) for x in list(colonies['colony_area'])]
|
| 356 |
+
volumes = [4.189*(x**3) for x in radii]
|
| 357 |
+
colonies['Colony volume'] = volumes
|
| 358 |
+
del radii, volumes
|
| 359 |
+
meanpix = sum(colonies['mean_pixel_value'] * colonies['colony_area'])/total_area_light
|
| 360 |
+
colonies.loc[len(colonies)+1] = ["Total", total_area_light, total_area_dark, None, ratio, meanpix, sum(colonies['Colony volume'])]
|
| 361 |
+
del meanpix
|
| 362 |
+
colonies = colonies[["Colony Number", 'Colony volume', "colony_area",'mean_pixel_value', "centroid", "necrotic_area","percent_necrotic"]]
|
| 363 |
Parameters = pd.DataFrame({"Minimum colony size in pixels":[min_size], "Minimum colony circularity":[min_circ]})
|
| 364 |
+
if do_necrosis == False:
|
| 365 |
+
colonies = colonies.drop('necrotic_area', axis=1)
|
| 366 |
+
colonies = colonies.drop('percent_necrotic', axis=1)
|
| 367 |
with pd.ExcelWriter("Group_analysis_results.xlsx") as writer:
|
| 368 |
colonies.to_excel(writer, sheet_name="Colony data", index=False)
|
| 369 |
Parameters.to_excel(writer, sheet_name="Parameters", index=False)
|
| 370 |
caption = np.ones((150, 2068, 3), dtype=np.uint8) * 255 # Multiply by 255 to make it white
|
| 371 |
+
if do_necrosis == True:
|
| 372 |
+
cv2.putText(caption, "Total area necrotic: "+str(total_area_dark)+ ", Total area living: "+str(total_area_light)+", Ratio: "+str(ratio), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 373 |
+
else:
|
| 374 |
+
cv2.putText(caption, "Total area: "+str(total_area_light), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 375 |
+
cv2.putText(caption, "Total number of colonies: "+str(len(colonies)-1), (40, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
|
| 376 |
print('img ndim: ' +str(img.ndim))
|
| 377 |
print('caption ndim: ' +str(caption.ndim))
|
| 378 |
|
app.py
CHANGED
|
@@ -2,25 +2,26 @@ import gradio as gr
|
|
| 2 |
from PIL import Image
|
| 3 |
|
| 4 |
# Single image analysis function (your existing logic)
|
| 5 |
-
def analyze_image(image, min_size, circularity):
|
| 6 |
import Colony_Analyzer_AI2_HF as analyzer
|
| 7 |
-
processed_img, picname, excelname = analyzer.main([image, min_size, circularity])
|
| 8 |
return Image.fromarray(processed_img), picname, excelname
|
| 9 |
|
| 10 |
# Z-stack analysis function (adapt with your own logic)
|
| 11 |
-
def analyze_zstack(images, min_size, circularity):
|
| 12 |
# images: list of PIL images
|
| 13 |
# Plug in your own z-stack segmentation logic here
|
| 14 |
# Example stub: pass images as a list to your analyzer
|
| 15 |
import Colony_Analyzer_AI_zstack2_HF as analyzer
|
| 16 |
images = [Image.open(f.name) for f in images]
|
| 17 |
-
processed_img, picname, excelname = analyzer.main([images, min_size, circularity])
|
| 18 |
return Image.fromarray(processed_img), picname, excelname
|
| 19 |
|
| 20 |
with gr.Blocks() as demo:
|
| 21 |
gr.Markdown("# AI Colony Analyzer\nUpload an image (or Z-Stack) to run colony analysis.")
|
| 22 |
|
| 23 |
z_stack_checkbox = gr.Checkbox(label="Enable Z-Stack", value=False)
|
|
|
|
| 24 |
image_input_single = gr.Image(type="pil", label="Upload Image", visible=True)
|
| 25 |
image_input_multi = gr.File(file_count="multiple", type="filepath", label="Upload Z-Stack Images", visible=False)
|
| 26 |
min_size_input = gr.Number(label="Minimum Colony Size (pixels)", value=1000)
|
|
@@ -42,16 +43,16 @@ with gr.Blocks() as demo:
|
|
| 42 |
outputs=[image_input_single, image_input_multi]
|
| 43 |
)
|
| 44 |
|
| 45 |
-
def conditional_analyze(z_stack, single_image, multi_images, min_size, circularity):
|
| 46 |
if z_stack:
|
| 47 |
-
return analyze_zstack(multi_images, min_size, circularity)
|
| 48 |
else:
|
| 49 |
-
return analyze_image(single_image, min_size, circularity)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
demo.launch()
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
|
| 4 |
# Single image analysis function (your existing logic)
|
| 5 |
+
def analyze_image(image, min_size, circularity, do_necrosis=True):
|
| 6 |
import Colony_Analyzer_AI2_HF as analyzer
|
| 7 |
+
processed_img, picname, excelname = analyzer.main([image, min_size, circularity,do_necrosis])
|
| 8 |
return Image.fromarray(processed_img), picname, excelname
|
| 9 |
|
| 10 |
# Z-stack analysis function (adapt with your own logic)
|
| 11 |
+
def analyze_zstack(images, min_size, circularity, do_necrosis=True):
|
| 12 |
# images: list of PIL images
|
| 13 |
# Plug in your own z-stack segmentation logic here
|
| 14 |
# Example stub: pass images as a list to your analyzer
|
| 15 |
import Colony_Analyzer_AI_zstack2_HF as analyzer
|
| 16 |
images = [Image.open(f.name) for f in images]
|
| 17 |
+
processed_img, picname, excelname = analyzer.main([images, min_size, circularity,do_necrosis])
|
| 18 |
return Image.fromarray(processed_img), picname, excelname
|
| 19 |
|
| 20 |
with gr.Blocks() as demo:
|
| 21 |
gr.Markdown("# AI Colony Analyzer\nUpload an image (or Z-Stack) to run colony analysis.")
|
| 22 |
|
| 23 |
z_stack_checkbox = gr.Checkbox(label="Enable Z-Stack", value=False)
|
| 24 |
+
do_necrosis_checkbox = gr.Checkbox(label="Enable necrosis detection", value=False)
|
| 25 |
image_input_single = gr.Image(type="pil", label="Upload Image", visible=True)
|
| 26 |
image_input_multi = gr.File(file_count="multiple", type="filepath", label="Upload Z-Stack Images", visible=False)
|
| 27 |
min_size_input = gr.Number(label="Minimum Colony Size (pixels)", value=1000)
|
|
|
|
| 43 |
outputs=[image_input_single, image_input_multi]
|
| 44 |
)
|
| 45 |
|
| 46 |
+
def conditional_analyze(z_stack, single_image, multi_images, min_size, circularity, do_necrosis=True):
|
| 47 |
if z_stack:
|
| 48 |
+
return analyze_zstack(multi_images, min_size, circularity,do_necrosis)
|
| 49 |
else:
|
| 50 |
+
return analyze_image(single_image, min_size, circularity,do_necrosis)
|
| 51 |
|
| 52 |
+
process_btn.click(
|
| 53 |
+
conditional_analyze,
|
| 54 |
+
inputs=[z_stack_checkbox, image_input_single, image_input_multi, min_size_input, circularity_input, do_necrosis_checkbox],
|
| 55 |
+
outputs=[output_image, output_file_img, output_file_excel]
|
| 56 |
+
)
|
| 57 |
|
| 58 |
demo.launch()
|