update layout
Browse files- app.py +67 -57
- src/about.py +19 -17
- src/display/utils.py +4 -1
- src/leaderboard/read_evals.py +15 -2
app.py
CHANGED
|
@@ -142,6 +142,11 @@ def filter_models(
|
|
| 142 |
return filtered_df
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
demo = gr.Blocks(css=custom_css)
|
| 146 |
with demo:
|
| 147 |
gr.HTML(TITLE)
|
|
@@ -150,56 +155,61 @@ with demo:
|
|
| 150 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 151 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 152 |
with gr.Row():
|
| 153 |
-
with gr.Column():
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
leaderboard_table = gr.components.Dataframe(
|
| 201 |
-
value=leaderboard_df[
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
datatype=TYPES,
|
| 204 |
elem_id="leaderboard-table",
|
| 205 |
interactive=False,
|
|
@@ -217,31 +227,31 @@ with demo:
|
|
| 217 |
update_table,
|
| 218 |
[
|
| 219 |
hidden_leaderboard_table_for_search,
|
| 220 |
-
|
| 221 |
filter_columns_type,
|
| 222 |
-
filter_columns_precision,
|
| 223 |
filter_columns_size,
|
| 224 |
-
|
| 225 |
search_bar,
|
| 226 |
],
|
| 227 |
leaderboard_table,
|
| 228 |
)
|
| 229 |
for selector in [
|
| 230 |
-
shown_columns,
|
| 231 |
filter_columns_type,
|
| 232 |
-
filter_columns_precision,
|
| 233 |
filter_columns_size,
|
| 234 |
-
deleted_models_visibility,
|
| 235 |
]:
|
| 236 |
selector.change(
|
| 237 |
update_table,
|
| 238 |
[
|
| 239 |
hidden_leaderboard_table_for_search,
|
| 240 |
-
|
| 241 |
filter_columns_type,
|
| 242 |
-
filter_columns_precision,
|
| 243 |
filter_columns_size,
|
| 244 |
-
|
| 245 |
search_bar,
|
| 246 |
],
|
| 247 |
leaderboard_table,
|
|
|
|
| 142 |
return filtered_df
|
| 143 |
|
| 144 |
|
| 145 |
+
shown_columns = [
|
| 146 |
+
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
|
| 150 |
demo = gr.Blocks(css=custom_css)
|
| 151 |
with demo:
|
| 152 |
gr.HTML(TITLE)
|
|
|
|
| 155 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 156 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 157 |
with gr.Row():
|
| 158 |
+
# with gr.Column():
|
| 159 |
+
# with gr.Row():
|
| 160 |
+
search_bar = gr.Textbox(
|
| 161 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 162 |
+
show_label=False,
|
| 163 |
+
elem_id="search-bar",
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# with gr.Row():
|
| 167 |
+
# shown_columns = gr.CheckboxGroup(
|
| 168 |
+
# choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
| 169 |
+
# value=[
|
| 170 |
+
# c.name
|
| 171 |
+
# for c in fields(AutoEvalColumn)
|
| 172 |
+
# if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 173 |
+
# ],
|
| 174 |
+
# label="Select columns to show",
|
| 175 |
+
# elem_id="column-select",
|
| 176 |
+
# interactive=True,
|
| 177 |
+
# )
|
| 178 |
+
# with gr.Row():
|
| 179 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 180 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 181 |
+
# )
|
| 182 |
+
# with gr.Column(min_width=320):
|
| 183 |
+
# with gr.Box(elem_id="box-filter"):
|
| 184 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 185 |
+
label="Model types",
|
| 186 |
+
choices=[t.to_str() for t in ModelType],
|
| 187 |
+
value=[t.to_str() for t in ModelType],
|
| 188 |
+
interactive=True,
|
| 189 |
+
elem_id="filter-columns-type",
|
| 190 |
+
)
|
| 191 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
| 192 |
+
# label="Precision",
|
| 193 |
+
# choices=[i.value.name for i in Precision],
|
| 194 |
+
# value=[i.value.name for i in Precision],
|
| 195 |
+
# interactive=True,
|
| 196 |
+
# elem_id="filter-columns-precision",
|
| 197 |
+
# )
|
| 198 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 199 |
+
label="Model sizes (in billions of parameters)",
|
| 200 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 201 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 202 |
+
interactive=True,
|
| 203 |
+
elem_id="filter-columns-size",
|
| 204 |
+
)
|
| 205 |
|
| 206 |
leaderboard_table = gr.components.Dataframe(
|
| 207 |
+
value=leaderboard_df[
|
| 208 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 209 |
+
], # ,# ] + shown_columns],
|
| 210 |
+
headers=[
|
| 211 |
+
c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default
|
| 212 |
+
], ##, if c.never_hidden] + shown_columns,
|
| 213 |
datatype=TYPES,
|
| 214 |
elem_id="leaderboard-table",
|
| 215 |
interactive=False,
|
|
|
|
| 227 |
update_table,
|
| 228 |
[
|
| 229 |
hidden_leaderboard_table_for_search,
|
| 230 |
+
# None,
|
| 231 |
filter_columns_type,
|
| 232 |
+
# filter_columns_precision,
|
| 233 |
filter_columns_size,
|
| 234 |
+
# None,
|
| 235 |
search_bar,
|
| 236 |
],
|
| 237 |
leaderboard_table,
|
| 238 |
)
|
| 239 |
for selector in [
|
| 240 |
+
# shown_columns,
|
| 241 |
filter_columns_type,
|
| 242 |
+
# filter_columns_precision,
|
| 243 |
filter_columns_size,
|
| 244 |
+
# deleted_models_visibility,
|
| 245 |
]:
|
| 246 |
selector.change(
|
| 247 |
update_table,
|
| 248 |
[
|
| 249 |
hidden_leaderboard_table_for_search,
|
| 250 |
+
# None,
|
| 251 |
filter_columns_type,
|
| 252 |
+
# filter_columns_precision,
|
| 253 |
filter_columns_size,
|
| 254 |
+
# None,
|
| 255 |
search_bar,
|
| 256 |
],
|
| 257 |
leaderboard_table,
|
src/about.py
CHANGED
|
@@ -7,6 +7,7 @@ class Task:
|
|
| 7 |
benchmark: str
|
| 8 |
metric: str
|
| 9 |
col_name: str
|
|
|
|
| 10 |
higher_is_better: bool = True
|
| 11 |
scale_by_100: bool = True
|
| 12 |
|
|
@@ -15,23 +16,24 @@ class Task:
|
|
| 15 |
# ---------------------------------------------------
|
| 16 |
class Tasks(Enum):
|
| 17 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 18 |
-
task1 = Task("ami_2020_aggressiveness", "f1,none", "AMI 2020 Agg")
|
| 19 |
-
task2 = Task("ami_2020_misogyny", "f1,none", "AMI 2020 Miso")
|
| 20 |
-
task0 = Task("arc_challenge_ita", "acc_norm,none", "ARC-C")
|
| 21 |
-
task4 = Task("belebele_ita", "acc_norm,none", "Belebele")
|
| 22 |
-
task3 = Task("gente_rephrasing", "acc,none", "GeNTE Neutralizing")
|
| 23 |
-
task12 = Task("haspeede2_hs", "f1,none", "HaSpeeDe2 HS")
|
| 24 |
-
task13 = Task("haspeede2_stereo", "f1,none", "HaSpeeDe2 Stereo")
|
| 25 |
-
task5 = Task("hatecheck_ita", "f1,none", "HateCheck")
|
| 26 |
-
task6 = Task("honest_ita", "acc,none", "HONEST", higher_is_better=False)
|
| 27 |
-
task14 = Task("ironita_irony", "f1,none", "IronITA Irony")
|
| 28 |
-
task15 = Task("ironita_sarcasm", "f1,none", "IronITA Sarcasm")
|
| 29 |
-
task7 = Task("itacola", "mcc,none", "ItaCoLA", scale_by_100=False)
|
| 30 |
-
task8 = Task("news_sum", "bertscore,none", "News Sum")
|
| 31 |
-
task16 = Task("sentipolc", "f1,none", "SENTIPOLC")
|
| 32 |
-
task9 = Task("squad_it", "squad_f1,get-answer", "SQuAD it")
|
| 33 |
-
task10 = Task("truthfulqa_mc2_ita", "acc,none", "TruthfulQA")
|
| 34 |
-
task11 = Task("xcopa_it", "acc,none", "XCOPA")
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
| 7 |
benchmark: str
|
| 8 |
metric: str
|
| 9 |
col_name: str
|
| 10 |
+
category: str
|
| 11 |
higher_is_better: bool = True
|
| 12 |
scale_by_100: bool = True
|
| 13 |
|
|
|
|
| 16 |
# ---------------------------------------------------
|
| 17 |
class Tasks(Enum):
|
| 18 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 19 |
+
task1 = Task("ami_2020_aggressiveness", "f1,none", "AMI 2020 Agg", "NLU")
|
| 20 |
+
task2 = Task("ami_2020_misogyny", "f1,none", "AMI 2020 Miso", "NLU")
|
| 21 |
+
task0 = Task("arc_challenge_ita", "acc_norm,none", "ARC-C", "CFK")
|
| 22 |
+
task4 = Task("belebele_ita", "acc_norm,none", "Belebele", "NLU")
|
| 23 |
+
task3 = Task("gente_rephrasing", "acc,none", "GeNTE Neutralizing", "BFS")
|
| 24 |
+
task12 = Task("haspeede2_hs", "f1,none", "HaSpeeDe2 HS", "BFS")
|
| 25 |
+
task13 = Task("haspeede2_stereo", "f1,none", "HaSpeeDe2 Stereo", "BFS")
|
| 26 |
+
task5 = Task("hatecheck_ita", "f1,none", "HateCheck", "BFS")
|
| 27 |
+
task6 = Task("honest_ita", "acc,none", "HONEST", "BFS", higher_is_better=False)
|
| 28 |
+
task14 = Task("ironita_irony", "f1,none", "IronITA Irony", "NLU")
|
| 29 |
+
task15 = Task("ironita_sarcasm", "f1,none", "IronITA Sarcasm", "NLU")
|
| 30 |
+
task7 = Task("itacola", "mcc,none", "ItaCoLA", "NLU", scale_by_100=False)
|
| 31 |
+
task8 = Task("news_sum", "bertscore,none", "News Sum", "NLU")
|
| 32 |
+
task16 = Task("sentipolc", "f1,none", "SENTIPOLC", "NLU")
|
| 33 |
+
task9 = Task("squad_it", "squad_f1,get-answer", "SQuAD it", "CFK")
|
| 34 |
+
task10 = Task("truthfulqa_mc2_ita", "acc,none", "TruthfulQA", "CFK")
|
| 35 |
+
task11 = Task("xcopa_it", "acc,none", "XCOPA", "CFK")
|
| 36 |
+
task17 = Task("hellaswag_ita", "acc_norm,none", "Hellaswag-it", "CFK")
|
| 37 |
|
| 38 |
|
| 39 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
|
@@ -32,7 +32,10 @@ auto_eval_column_dict.append(["training_codebase", ColumnContent, ColumnContent(
|
|
| 32 |
auto_eval_column_dict.append(["training_data", ColumnContent, ColumnContent("Data", "str", True, False)])
|
| 33 |
|
| 34 |
# Scores
|
| 35 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("
|
|
|
|
|
|
|
|
|
|
| 36 |
for task in Tasks:
|
| 37 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 38 |
|
|
|
|
| 32 |
auto_eval_column_dict.append(["training_data", ColumnContent, ColumnContent("Data", "str", True, False)])
|
| 33 |
|
| 34 |
# Scores
|
| 35 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg ⬆️", "number", True)])
|
| 36 |
+
auto_eval_column_dict.append(["average_NLU", ColumnContent, ColumnContent("Avg NLU", "number", True)])
|
| 37 |
+
auto_eval_column_dict.append(["average_CFK", ColumnContent, ColumnContent("Avg CFK", "number", True)])
|
| 38 |
+
auto_eval_column_dict.append(["average_BFS", ColumnContent, ColumnContent("Avg BFS", "number", True)])
|
| 39 |
for task in Tasks:
|
| 40 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 41 |
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -104,7 +104,7 @@ class EvalResult:
|
|
| 104 |
if task.scale_by_100:
|
| 105 |
mean_acc *= 100.0
|
| 106 |
|
| 107 |
-
results[task.benchmark] = mean_acc
|
| 108 |
|
| 109 |
# pdb.set_trace()
|
| 110 |
|
|
@@ -141,7 +141,17 @@ class EvalResult:
|
|
| 141 |
|
| 142 |
def to_dict(self):
|
| 143 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
data_dict = {
|
| 146 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 147 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
@@ -150,6 +160,9 @@ class EvalResult:
|
|
| 150 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 151 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 152 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
|
|
|
|
|
|
|
| 153 |
AutoEvalColumn.average.name: average,
|
| 154 |
AutoEvalColumn.license.name: self.license,
|
| 155 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
|
| 104 |
if task.scale_by_100:
|
| 105 |
mean_acc *= 100.0
|
| 106 |
|
| 107 |
+
results[task.benchmark] = {"value": mean_acc, "category": task.category}
|
| 108 |
|
| 109 |
# pdb.set_trace()
|
| 110 |
|
|
|
|
| 141 |
|
| 142 |
def to_dict(self):
|
| 143 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 144 |
+
|
| 145 |
+
# compute one average score per category
|
| 146 |
+
def _get_score_category(category):
|
| 147 |
+
filtered_scores = [v["value"] for _, v in self.results.items() if v["category"] == category]
|
| 148 |
+
return sum(filtered_scores) / len(filtered_scores)
|
| 149 |
+
|
| 150 |
+
average_NLU = _get_score_category("NLU")
|
| 151 |
+
average_CFK = _get_score_category("CFK")
|
| 152 |
+
average_BFS = _get_score_category("BFS")
|
| 153 |
+
average = (average_NLU + average_CFK + average_BFS) / 3
|
| 154 |
+
|
| 155 |
data_dict = {
|
| 156 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 157 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
|
|
| 160 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 161 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 162 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 163 |
+
AutoEvalColumn.average_NLU.name: average_NLU,
|
| 164 |
+
AutoEvalColumn.average_CFK.name: average_CFK,
|
| 165 |
+
AutoEvalColumn.average_BFS.name: average_BFS,
|
| 166 |
AutoEvalColumn.average.name: average,
|
| 167 |
AutoEvalColumn.license.name: self.license,
|
| 168 |
AutoEvalColumn.params.name: self.num_params,
|