Spaces:
Sleeping
Sleeping
| import tempfile | |
| from transformers import pipeline | |
| import gradio as gr | |
| from fastapi import FastAPI, UploadFile, File, Request | |
| import os | |
| from typing import Optional | |
| # Initialize classifier | |
| classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er") | |
| # Create FastAPI app (works with Gradio) | |
| app = FastAPI() | |
| def save_upload_file(upload_file: UploadFile) -> str: | |
| """Save uploaded file to temporary location""" | |
| try: | |
| suffix = os.path.splitext(upload_file.filename)[1] | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp: | |
| tmp.write(upload_file.file.read()) | |
| return tmp.name | |
| finally: | |
| upload_file.file.close() | |
| async def predict_from_upload(file: UploadFile = File(...)): | |
| """API endpoint for FormData uploads""" | |
| try: | |
| # Save the uploaded file temporarily | |
| temp_path = save_upload_file(file) | |
| # Process the audio | |
| predictions = classifier(temp_path) | |
| # Clean up | |
| os.unlink(temp_path) | |
| return {"predictions": predictions} | |
| except Exception as e: | |
| return {"error": str(e)}, 500 | |
| # Gradio interface for testing | |
| def gradio_predict(audio_file): | |
| """Gradio interface that handles both file objects and paths""" | |
| if isinstance(audio_file, str): # Path from Gradio upload | |
| audio_path = audio_file | |
| else: # Direct file object | |
| temp_path = save_upload_file(audio_file) | |
| audio_path = temp_path | |
| predictions = classifier(audio_path) | |
| if hasattr(audio_file, 'file'): # Clean up if we created temp file | |
| os.unlink(audio_path) | |
| return {p["label"]: p["score"] for p in predictions} | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=gradio_predict, | |
| inputs=gr.Audio(type="filepath", label="Upload Audio"), | |
| outputs=gr.Label(num_top_classes=5), | |
| title="Audio Emotion Recognition", | |
| description="Upload an audio file to analyze emotional content" | |
| ) | |
| # Mount Gradio app | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| # For running locally | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |