File size: 39,820 Bytes
aaaa707
77b5042
3b07030
90767a7
53cf6c0
 
90767a7
 
 
53c587a
aaaa707
53cf6c0
 
 
 
 
53c587a
53cf6c0
 
90767a7
53cf6c0
77b5042
3b07030
632c1d5
3b07030
53cf6c0
77b5042
1af938b
 
77b5042
 
 
 
3b07030
1af938b
3b07030
632c1d5
3b07030
77b5042
 
 
 
 
3b07030
77b5042
 
3b07030
77b5042
 
 
3b07030
77b5042
 
 
 
3b07030
77b5042
 
 
 
 
3b07030
77b5042
3b07030
77b5042
 
 
3b07030
77b5042
 
 
3b07030
77b5042
 
 
 
 
 
3b07030
77b5042
 
 
 
 
3b07030
77b5042
 
 
 
 
 
 
 
 
 
3b07030
77b5042
3b07030
77b5042
 
3b07030
77b5042
 
 
 
 
 
 
3b07030
77b5042
 
 
 
3b07030
77b5042
 
53c587a
3b07030
77b5042
 
 
 
 
 
 
 
3b07030
77b5042
3b07030
77b5042
 
 
 
 
 
 
 
 
 
 
3b07030
77b5042
 
 
3b07030
77b5042
 
 
 
 
 
 
 
3b07030
77b5042
53c587a
77b5042
 
 
 
 
 
 
 
3b07030
53cf6c0
aaaa707
53cf6c0
 
aaaa707
3b07030
53cf6c0
 
 
 
 
 
 
 
aaaa707
53cf6c0
632c1d5
aaaa707
53cf6c0
 
 
 
3b07030
632c1d5
53cf6c0
 
 
 
 
 
3b07030
491d9d6
77b5042
 
 
3b07030
491d9d6
 
3b07030
77b5042
3b07030
53c587a
77b5042
 
3b07030
53c587a
491d9d6
 
 
 
3b07030
53cf6c0
1af938b
3b07030
aaaa707
 
 
 
 
 
 
 
 
3b07030
632c1d5
 
1af938b
632c1d5
 
 
 
aaaa707
1af938b
77b5042
 
491d9d6
1af938b
632c1d5
 
aaaa707
632c1d5
3b07030
 
632c1d5
3b07030
53cf6c0
 
 
1af938b
77b5042
491d9d6
90767a7
632c1d5
 
 
3b07030
53cf6c0
632c1d5
1af938b
632c1d5
3b07030
90767a7
53cf6c0
90767a7
3b07030
1af938b
632c1d5
53cf6c0
aa957eb
 
3b07030
 
aa957eb
aaaa707
 
 
 
 
 
3b07030
1af938b
aaaa707
 
 
 
 
 
 
 
632c1d5
53cf6c0
3b07030
 
 
53c587a
3b07030
 
 
53c587a
 
3b07030
53cf6c0
3b07030
632c1d5
53cf6c0
 
 
1af938b
53cf6c0
 
 
 
 
491d9d6
1af938b
53c587a
53cf6c0
 
53c587a
53cf6c0
3b07030
aaaa707
53cf6c0
 
 
 
 
 
 
 
 
 
491d9d6
3b07030
1af938b
aaaa707
53cf6c0
90767a7
 
1af938b
aaaa707
1af938b
aaaa707
 
 
53cf6c0
 
1af938b
 
3b07030
 
1af938b
 
 
 
 
 
 
aaaa707
 
1af938b
 
 
53c587a
1af938b
53c587a
1af938b
53c587a
1af938b
 
 
 
 
 
53c587a
1af938b
 
 
 
53c587a
1af938b
 
aaaa707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af938b
53c587a
aaaa707
 
 
1af938b
aaaa707
 
 
 
 
 
 
 
3b07030
53c587a
aaaa707
53c587a
 
aaaa707
1af938b
 
53cf6c0
 
3b07030
1af938b
77b5042
1af938b
77b5042
3b07030
1af938b
 
77b5042
3b07030
1af938b
53c587a
1af938b
77b5042
3b07030
1af938b
 
3b07030
77b5042
 
3b07030
53c587a
3b07030
53c587a
3b07030
1af938b
 
77b5042
1af938b
 
53c587a
1af938b
53c587a
77b5042
3b07030
53c587a
3b07030
1af938b
 
 
 
 
3b07030
1af938b
 
53c587a
3b07030
53c587a
 
 
3b07030
1af938b
 
53c587a
3b07030
53c587a
 
1af938b
3b07030
1af938b
 
53c587a
3b07030
1af938b
 
 
 
 
 
 
 
3b07030
1af938b
 
 
 
 
 
53c587a
 
3b07030
1af938b
 
53c587a
3b07030
1af938b
 
53c587a
 
1af938b
3b07030
1af938b
53c587a
 
 
 
 
 
3b07030
1af938b
20dc709
53c587a
53cf6c0
 
 
 
3b07030
491d9d6
77b5042
 
 
3b07030
53cf6c0
 
1af938b
3b07030
aaaa707
 
 
 
 
 
 
 
 
3b07030
632c1d5
 
1af938b
632c1d5
 
 
aaaa707
 
1af938b
632c1d5
 
aaaa707
632c1d5
3b07030
 
632c1d5
3b07030
90767a7
53cf6c0
 
1af938b
90767a7
632c1d5
1af938b
632c1d5
3b07030
53cf6c0
632c1d5
1af938b
632c1d5
53cf6c0
90767a7
53cf6c0
90767a7
3b07030
632c1d5
53cf6c0
aa957eb
 
3b07030
 
 
 
 
 
53c587a
aa957eb
aaaa707
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
3b07030
632c1d5
53cf6c0
 
 
90767a7
53cf6c0
 
aaaa707
53cf6c0
 
 
 
53c587a
aaaa707
 
 
 
 
 
 
3b07030
 
53c587a
632c1d5
3b07030
632c1d5
3b07030
90767a7
53c587a
1af938b
 
53c587a
 
 
53cf6c0
 
53c587a
3b07030
53c587a
1af938b
53c587a
1af938b
3b07030
1af938b
53c587a
1af938b
aaaa707
 
 
 
1af938b
 
 
 
53c587a
 
 
 
 
1af938b
 
 
 
 
 
53c587a
1af938b
 
 
 
3b07030
1af938b
aaaa707
 
 
 
 
 
 
 
 
1af938b
aaaa707
3b07030
 
1af938b
53c587a
aaaa707
 
 
 
 
 
 
53c587a
3b07030
53c587a
aaaa707
 
53c587a
1af938b
 
53cf6c0
aaaa707
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
 
 
 
53c587a
 
 
 
 
 
 
 
aaaa707
53c587a
 
 
 
 
 
aaaa707
53c587a
 
 
aaaa707
53c587a
 
aaaa707
 
53c587a
 
aaaa707
53c587a
53cf6c0
53c587a
aaaa707
1af938b
aaaa707
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# LLM.py (محدث بالكامل مع ملفات الخروج الديناميكية والتغذية الراجعة)
import os, traceback, asyncio, json, time
import re # ✅ استيراد مكتبة re
from datetime import datetime
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError
import numpy as np
from sentiment_news import NewsFetcher
from helpers import validate_required_fields, format_technical_indicators, format_strategy_scores, format_candle_data_for_pattern_analysis, format_whale_analysis_for_llm, parse_json_from_response
from ml_engine.processor import safe_json_parse

NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"

class PatternAnalysisEngine:
    # --- (كود PatternAnalysisEngine كما هو بدون تغيير) ---
    def __init__(self, llm_service):
        self.llm = llm_service

    def _format_chart_data_for_llm(self, ohlcv_data):
        """تنسيق شامل لبيانات الشموع الخام لتحليل الأنماط"""
        if not ohlcv_data:
            return "Insufficient chart data for pattern analysis"

        try:
            # استخدام جميع الأطر الزمنية المتاحة مع البيانات الخام
            all_timeframes = []
            for timeframe, candles in ohlcv_data.items():
                if candles and len(candles) >= 10:  # تخفيف الشرط من 20 إلى 10 شموع
                    # تمرير البيانات الخام مباشرة للنموذج
                    raw_candle_summary = self._format_raw_candle_data(candles, timeframe)
                    all_timeframes.append(f"=== {timeframe.upper()} TIMEFRAME ({len(candles)} CANDLES) ===\n{raw_candle_summary}")

            return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
        except Exception as e:
            return f"Error formatting chart data: {str(e)}"

    def _format_raw_candle_data(self, candles, timeframe):
        """تنسيق بيانات الشموع الخام بشكل مفصل للنموذج"""
        try:
            if len(candles) < 10:
                return f"Only {len(candles)} candles available - insufficient for deep pattern analysis"

            # أخذ آخر 50 شمعة كحد أقصى لتجنب السياق الطويل جداً
            analysis_candles = candles[-50:] if len(candles) > 50 else candles

            summary = []
            summary.append(f"Total candles: {len(candles)} (showing last {len(analysis_candles)})")
            summary.append("Recent candles (newest to oldest):")

            # عرض آخر 15 شمعة بالتفصيل
            for i in range(min(15, len(analysis_candles))):
                idx = len(analysis_candles) - 1 - i
                candle = analysis_candles[idx]

                # تحويل الطابع الزمني
                try:
                    timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%Y-%m-%d %H:%M:%S')
                except:
                    timestamp = "unknown"

                open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5]

                candle_type = "🟢 BULLISH" if close > open_price else "🔴 BEARISH" if close < open_price else "⚪ NEUTRAL"
                body_size = abs(close - open_price)
                body_percent = (body_size / open_price * 100) if open_price > 0 else 0

                wick_upper = high - max(open_price, close)
                wick_lower = min(open_price, close) - low
                total_range = high - low

                if total_range > 0:
                    body_ratio = (body_size / total_range) * 100
                    upper_wick_ratio = (wick_upper / total_range) * 100
                    lower_wick_ratio = (wick_lower / total_range) * 100
                else:
                    body_ratio = upper_wick_ratio = lower_wick_ratio = 0

                summary.append(f"{i+1:2d}. {timestamp} | {candle_type}")
                summary.append(f"     O:{open_price:.8f} H:{high:.8f} L:{low:.8f} C:{close:.8f}")
                summary.append(f"     Body: {body_percent:.2f}% | Body/Range: {body_ratio:.1f}%")
                summary.append(f"     Wicks: Upper {upper_wick_ratio:.1f}% / Lower {lower_wick_ratio:.1f}%")
                summary.append(f"     Volume: {volume:,.0f}")

            # إضافة تحليل إحصائي
            if len(analysis_candles) >= 20:
                stats = self._calculate_candle_statistics(analysis_candles)
                summary.append(f"\n📊 STATISTICAL ANALYSIS:")
                summary.append(f"• Price Change: {stats['price_change']:+.2f}%")
                summary.append(f"• Average Body Size: {stats['avg_body']:.4f}%")
                summary.append(f"• Volatility (ATR): {stats['atr']:.6f}")
                summary.append(f"• Trend: {stats['trend']}")
                summary.append(f"• Support: {stats['support']:.6f}")
                summary.append(f"• Resistance: {stats['resistance']:.6f}")

            return "\n".join(summary)

        except Exception as e:
            return f"Error formatting raw candle data: {str(e)}"

    def _calculate_candle_statistics(self, candles):
        """حساب الإحصائيات الأساسية للشموع"""
        try:
            closes = [c[4] for c in candles]
            opens = [c[1] for c in candles]
            highs = [c[2] for c in candles]
            lows = [c[3] for c in candles]

            # حساب التغير في السعر
            first_close = closes[0]
            last_close = closes[-1]
            price_change = ((last_close - first_close) / first_close) * 100

            # حساب متوسط حجم الجسم
            body_sizes = [abs(close - open) for open, close in zip(opens, closes)]
            avg_body = (sum(body_sizes) / len(body_sizes)) / first_close * 100 if first_close > 0 else 0 # Handle potential ZeroDivisionError

            # حساب ATR مبسط
            true_ranges = []
            for i in range(1, len(candles)):
                high, low, prev_close = highs[i], lows[i], closes[i-1]
                tr1 = high - low
                tr2 = abs(high - prev_close)
                tr3 = abs(low - prev_close)
                true_ranges.append(max(tr1, tr2, tr3))

            atr = sum(true_ranges) / len(true_ranges) if true_ranges else 0

            # تحديد الاتجاه
            if price_change > 3:
                trend = "STRONG UPTREND"
            elif price_change > 1:
                trend = "UPTREND"
            elif price_change < -3:
                trend = "STRONG DOWNTREND"
            elif price_change < -1:
                trend = "DOWNTREND"
            else:
                trend = "SIDEWAYS"

            # مستويات الدعم والمقاومة المبسطة
            support = min(lows)
            resistance = max(highs)

            return {
                'price_change': price_change,
                'avg_body': avg_body,
                'atr': atr,
                'trend': trend,
                'support': support,
                'resistance': resistance
            }

        except Exception as e:
             # Provide default values in case of calculation error
            return {
                'price_change': 0,
                'avg_body': 0,
                'atr': 0,
                'trend': 'UNKNOWN',
                'support': 0,
                'resistance': 0
            }

    async def analyze_chart_patterns(self, symbol, ohlcv_data):
        pass 

    def _parse_pattern_response(self, response_text):
        pass 


class LLMService:
    def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
        self.api_key = api_key
        self.model_name = model_name
        self.temperature = temperature
        self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
        self.news_fetcher = NewsFetcher()
        self.pattern_engine = PatternAnalysisEngine(self) 
        self.semaphore = asyncio.Semaphore(5)
        self.r2_service = None  # سيتم تعيينه من app.py
        self.learning_engine = None # 🔴 جديد: سيتم تعيينه من app.py

    def _rate_limit_nvidia_api(func):
        @wraps(func)
        @on_exception(expo, RateLimitError, max_tries=5)
        async def wrapper(*args, **kwargs):
            return await func(*args, **kwargs)
        return wrapper

    async def get_trading_decision(self, data_payload: dict):
        try:
            symbol = data_payload.get('symbol', 'unknown')
            target_strategy = data_payload.get('target_strategy', 'GENERIC')

            ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
            if not ohlcv_data:
                print(f"⚠️ لا توجد بيانات شموع لـ {symbol} - تخطي التحليل")
                return None

            total_candles = sum(len(data) for data in ohlcv_data.values() if data) if ohlcv_data else 0
            timeframes_count = len([tf for tf, data in ohlcv_data.items() if data and len(data) >= 10]) if ohlcv_data else 0

            print(f"   📊 بيانات {symbol}: {total_candles} شمعة في {timeframes_count} إطار زمني")

            if total_candles < 30:
                print(f"   ⚠️ بيانات شموع غير كافية لـ {symbol}: {total_candles} شمعة فقط")
                return None

            valid_timeframes = [tf for tf, candles in ohlcv_data.items() if candles and len(candles) >= 5]
            if not valid_timeframes:
                print(f"   ⚠️ لا توجد أطر زمنية صالحة لـ {symbol}")
                return None
            print(f"   ✅ أطر زمنية صالحة لـ {symbol}: {', '.join(valid_timeframes)}")

            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            whale_data = data_payload.get('whale_data', {})

            # 🔴 جديد: الحصول على تغذية راجعة من محرك التعلم
            best_learned_exit = "None"
            learning_feedback = "No learning data yet."
            if self.learning_engine and self.learning_engine.initialized:
                best_learned_exit = await self.learning_engine.get_best_exit_profile(target_strategy)
                if best_learned_exit != "unknown":
                    learning_feedback = f"Learning System Feedback: For the '{target_strategy}' strategy, the '{best_learned_exit}' exit profile has historically performed best. Please consider this."
            
            prompt = self._create_comprehensive_trading_prompt(data_payload, news_text, None, whale_data, learning_feedback)

            if self.r2_service:
                analysis_data = {
                    'symbol': symbol,
                    'current_price': data_payload.get('current_price'),
                    'final_score': data_payload.get('final_score'),
                    'enhanced_final_score': data_payload.get('enhanced_final_score'),
                    'target_strategy': target_strategy,
                    'learning_feedback_provided': learning_feedback, # 🔴 جديد
                    'whale_data_available': whale_data.get('data_available', False),
                    'total_candles': total_candles,
                    'timeframes_count': timeframes_count,
                    'valid_timeframes': valid_timeframes,
                    'timestamp': datetime.now().isoformat()
                }
                await self.r2_service.save_llm_prompts_async(
                    symbol, 'comprehensive_trading_decision_v2', prompt, analysis_data
                )

            async with self.semaphore:
                response = await self._call_llm(prompt)

            decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
            if decision_dict:
                decision_dict['model_source'] = self.model_name
                decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
                decision_dict['total_candles_analyzed'] = total_candles
                decision_dict['timeframes_analyzed'] = timeframes_count
                return decision_dict
            else:
                print(f"❌ فشل تحليل النموذج الضخم لـ {symbol} - لا توجد قرارات بديلة")
                return None

        except Exception as e:
            print(f"❌ خطأ في قرار التداول لـ {data_payload.get('symbol', 'unknown')}: {e}")
            traceback.print_exc()
            return None

    def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
        try:
            json_str = parse_json_from_response(response_text)
            if not json_str:
                print(f"❌ فشل استخراج JSON من استجابة النموذج لـ {symbol}")
                return None

            decision_data = safe_json_parse(json_str)
            if not decision_data:
                 print(f"❌ فشل تحليل JSON (safe_json_parse) لـ {symbol}: {response_text}")
                 return None

            # 🔴 تحديث: إضافة الحقول الجديدة للخروج
            required_fields = [
                'action', 'reasoning', 'risk_assessment', 'stop_loss', 'take_profit', 
                'expected_target_minutes', 'confidence_level', 'pattern_identified_by_llm',
                'exit_profile', 'exit_parameters'
            ]
            if not validate_required_fields(decision_data, required_fields):
                print(f"❌ حقول مطلوبة مفقودة في استجابة النموذج لـ {symbol}")
                # طباعة الحقول المفقودة
                missing = [f for f in required_fields if f not in decision_data]
                print(f"   MIA: {missing}")
                return None
            
            # 🔴 التحقق من exit_parameters
            if not isinstance(decision_data['exit_parameters'], dict):
                print(f"❌ الحقل 'exit_parameters' ليس قاموساً (dict) صالحاً لـ {symbol}")
                return None

            action = decision_data.get('action')
            if action not in ['BUY', 'HOLD']:
                print(f"⚠️ النموذج اقترح إجراء غير مدعوم ({action}) لـ {symbol}. سيتم اعتباره HOLD.")
                decision_data['action'] = 'HOLD'

            if decision_data['action'] == 'BUY':
                decision_data['trade_type'] = 'LONG'
            else:
                decision_data['trade_type'] = None

            strategy_value = decision_data.get('strategy')
            if not strategy_value or strategy_value == 'unknown':
                decision_data['strategy'] = fallback_strategy

            return decision_data
        except Exception as e:
            print(f"❌ خطأ في تحليل استجابة النموذج لـ {symbol}: {e}")
            return None

    async def _get_pattern_analysis(self, data_payload):
        try:
            symbol = data_payload['symbol']
            ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
            if ohlcv_data:
                 return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
            return None
        except Exception as e:
            print(f"❌ فشل تحليل الأنماط (قد يكون لإعادة التحليل) لـ {data_payload.get('symbol')}: {e}")
            return None

    def _create_comprehensive_trading_prompt(self, payload: dict, news_text: str, pattern_analysis: dict, whale_data: dict, learning_feedback: str) -> str:
        symbol = payload.get('symbol', 'N/A')
        current_price = payload.get('current_price', 'N/A')
        reasons = payload.get('reasons_for_candidacy', [])
        sentiment_data = payload.get('sentiment_data', {})
        advanced_indicators = payload.get('advanced_indicators', {})
        strategy_scores = payload.get('strategy_scores', {})
        recommended_strategy = payload.get('recommended_strategy', 'N/A')
        target_strategy = payload.get('target_strategy', 'GENERIC')
        final_score = payload.get('final_score', 'N/A')
        enhanced_final_score = payload.get('enhanced_final_score', 'N/A')
        ohlcv_data = payload.get('raw_ohlcv') or payload.get('ohlcv', {})

        final_score_display = f"{final_score:.3f}" if isinstance(final_score, (int, float)) else str(final_score)
        enhanced_score_display = f"{enhanced_score_display:.3f}" if isinstance(enhanced_score, (int, float)) else str(enhanced_score)

        indicators_summary = format_technical_indicators(advanced_indicators)
        strategies_summary = format_strategy_scores(strategy_scores, recommended_strategy)
        whale_analysis_section = format_whale_analysis_for_llm(whale_data)
        candle_data_section = self._format_candle_data_comprehensive(ohlcv_data) 
        market_context_section = self._format_market_context(sentiment_data)
        
        # 🔴 جديد: إضافة التغذية الراجعة للتعلم
        learning_feedback_section = f"🧠 LEARNING ENGINE FEEDBACK:\n{learning_feedback}"

        prompt = f"""
COMPREHENSIVE TRADING ANALYSIS FOR {symbol}

🚨 IMPORTANT SYSTEM CONSTRAINT: This is a SPOT TRADING system ONLY. Decisions MUST be limited to BUY (LONG) or HOLD. SHORT selling is NOT possible.

🎯 STRATEGY CONTEXT:
- Target Strategy: {target_strategy}
- Recommended Strategy: {recommended_strategy}
- Current Price: ${current_price}
- System Score: {final_score_display}
- Enhanced Score: {enhanced_score_display}

{learning_feedback_section}

📊 TECHNICAL INDICATORS (ALL TIMEFRAMES):
{indicators_summary}

📈 RAW CANDLE DATA SUMMARY & STATISTICS (FOR YOUR PATTERN ANALYSIS):
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}

🎯 STRATEGY ANALYSIS (System's recommendation based on various factors):
{strategies_summary}

🐋 WHALE ACTIVITY ANALYSIS:
{whale_analysis_section}

🌍 MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this analysis."}

📰 LATEST NEWS:
{news_text if news_text else "No significant news found"}

📋 REASONS FOR SYSTEM CANDIDACY (Layer 1 & 2 Screening):
{chr(10).join([f"• {reason}" for reason in reasons]) if reasons else "No specific reasons provided"}

🎯 TRADING DECISION INSTRUCTIONS (SPOT ONLY - LLM MUST ANALYZE PATTERNS AND DEFINE EXIT STRATEGY):

1.  **PERFORM CHART PATTERN ANALYSIS:** Based *ONLY* on the provided 'RAW CANDLE DATA SUMMARY & STATISTICS' section above, identify relevant chart patterns (Triangles, Flags, Head & Shoulders, etc.) and candlestick patterns (Engulfing, Doji, etc.).
2.  **INTEGRATE ALL DATA:** Combine YOUR pattern analysis with technicals, strategy analysis, whale activity, market context, news, and the 'LEARNING ENGINE FEEDBACK'.
3.  **ADHERE STRICTLY TO SPOT TRADING RULES:** Only decide 'BUY' (LONG) or 'HOLD'. DO NOT suggest 'SELL'.
4.  **DEFINE EXIT STRATEGY (CRITICAL):** If (and only if) action is 'BUY', you MUST define the dynamic exit strategy (Exit Profile) and its parameters. This profile will be executed by a separate tactical bot.
    -   `"exit_profile"`: Choose one: "ATR_TRAILING" (Recommended for trends/breakouts), "FIXED_TARGET" (Recommended for mean reversion/scalping), "TIME_BASED" (Exit after X minutes regardless), "SIGNAL_BASED" (Emergency exit on opposite signal - *Use with caution*).
    -   `"exit_parameters"`: Define parameters for the chosen profile.
        -   For "ATR_TRAILING": {{"atr_multiplier": 2.0, "atr_period": 14, "break_even_trigger_percent": 1.5}} (break_even_trigger_percent moves stop to entry when profit hits 1.5%)
        -   For "FIXED_TARGET": {{"time_stop_minutes": 120}} (Hard stop if target not hit in 120 mins)
        -   For "TIME_BASED": {{"exit_after_minutes": 60}}
        -   For "SIGNAL_BASED": {{"emergency_volume_spike_multiplier": 5.0}} (Exit if reverse volume spike > 5x average)
5.  **DEFINE HARD STOPS:** You must still provide the initial "hard" stop_loss (catastrophic failure stop) and the final "take_profit" target. The dynamic exit profile operates *within* these boundaries.

OUTPUT FORMAT (JSON - SPOT ONLY - INCLUDE EXIT PROFILE):
{{
    "action": "BUY/HOLD",
    "reasoning": "Detailed explanation integrating ALL data sources, starting with the patterns identified from the candle summary, and justifying the BUY or HOLD decision. Explain *why* the chosen exit_profile is appropriate.",
    "pattern_identified_by_llm": "Name of the primary pattern(s) identified (e.g., 'Bull Flag on 1H', 'No Clear Pattern')",
    "pattern_influence": "Explain how the identified pattern(s) influenced the decision.",
    "risk_assessment": "low/medium/high",
    
    "stop_loss": 0.000000, # Required if action is BUY (Hard stop loss), 0 if HOLD
    "take_profit": 0.000000, # Required if action is BUY (Final target), 0 if HOLD
    
    "exit_profile": "FIXED_TARGET", # (Required if BUY, "None" if HOLD). Choose from: "ATR_TRAILING", "FIXED_TARGET", "TIME_BASED", "SIGNAL_BASED"
    "exit_parameters": {{ "time_stop_minutes": 120 }}, # (Required if BUY, {{}} if HOLD). Must match the chosen exit_profile.
    
    "expected_target_minutes": 15, # Required if action is BUY (Time to reach final TP), 0 if HOLD
    "confidence_level": 0.85, # Confidence in the BUY or HOLD decision
    "strategy": "{target_strategy}", # The strategy context provided
    "whale_influence": "How whale data influenced the BUY/HOLD decision",
    "key_support_level": 0.000000, # Derived from candle data analysis
    "key_resistance_level": 0.000000, # Derived from candle data analysis
    "risk_reward_ratio": 2.5 # Calculated for the HARD SL/TP, 0 if HOLD
}}
"""
        return prompt


    def _format_candle_data_comprehensive(self, ohlcv_data):
        """تنسيق شامل لبيانات الشموع الخام"""
        if not ohlcv_data:
            return "No raw candle data available for analysis"

        try:
            timeframes_available = []
            total_candles = 0

            for timeframe, candles in ohlcv_data.items():
                if candles and len(candles) >= 5:
                    timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)")
                    total_candles += len(candles)

            if not timeframes_available:
                return "Insufficient candle data across all timeframes"

            summary = f"📊 Available Timeframes: {', '.join(timeframes_available)}\n"
            summary += f"📈 Total Candles Available: {total_candles}\n\n"

            raw_candle_analysis_text = self.pattern_engine._format_chart_data_for_llm(ohlcv_data)

            summary += raw_candle_analysis_text

            return summary
        except Exception as e:
            return f"Error formatting raw candle data: {str(e)}"

    def _analyze_timeframe_candles(self, candles, timeframe):
        """تحليل الشموع لإطار زمني محدد - (تستخدم داخلياً بواسطة _format_raw_candle_data)"""
        try:
            if len(candles) < 10:
                return f"Insufficient data ({len(candles)} candles)"

            recent_candles = candles[-15:]

            closes = [c[4] for c in recent_candles]
            opens = [c[1] for c in recent_candles]
            highs = [c[2] for c in recent_candles]
            lows = [c[3] for c in recent_candles]
            volumes = [c[5] for c in recent_candles]

            current_price = closes[-1]
            first_price = closes[0]
            price_change = ((current_price - first_price) / first_price) * 100 if first_price > 0 else 0

            if price_change > 2: trend = "🟢 UPTREND"
            elif price_change < -2: trend = "🔴 DOWNTREND"
            else: trend = "⚪ SIDEWAYS"

            high_max = max(highs)
            low_min = min(lows)
            volatility = ((high_max - low_min) / low_min) * 100 if low_min > 0 else 0

            avg_volume = sum(volumes) / len(volumes) if volumes else 1
            current_volume = volumes[-1] if volumes else 0
            volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1

            green_candles = sum(1 for i in range(len(closes)) if closes[i] > opens[i])
            red_candles = len(closes) - green_candles
            candle_ratio = green_candles / len(closes) if closes else 0

            analysis = [
                f"📈 Trend: {trend} ({price_change:+.2f}%)",
                f"🌊 Volatility: {volatility:.2f}%",
                f"📦 Volume: {volume_ratio:.2f}x average",
                f"🕯️ Candles: {green_candles}🟢/{red_candles}🔴 ({candle_ratio:.1%} green)",
                f"💰 Range: {low_min:.6f} - {high_max:.6f}",
                f"🎯 Current: {current_price:.6f}"
            ]

            return "\n".join(analysis)
        except Exception as e:
            return f"Analysis error: {str(e)}"

    def _format_market_context(self, sentiment_data):
        """تنسيق سياق السوق"""
        if not sentiment_data or sentiment_data.get('data_quality', 'LOW') == 'LOW':
            return "Market context data not available or incomplete."

        btc_sentiment = sentiment_data.get('btc_sentiment', 'N/A')
        fear_greed = sentiment_data.get('fear_and_greed_index', 'N/A')
        market_trend = sentiment_data.get('market_trend', 'N/A') # e.g., 'bull_market', 'bear_market', 'sideways_market'

        lines = [
            f"• Bitcoin Sentiment: {btc_sentiment}",
            f"• Fear & Greed Index: {fear_greed} ({sentiment_data.get('sentiment_class', 'Neutral')})",
            f"• Overall Market Trend: {market_trend.replace('_', ' ').title() if isinstance(market_trend, str) else 'N/A'}"
        ]

        general_whale = sentiment_data.get('general_whale_activity', {})
        if general_whale and general_whale.get('sentiment') != 'NEUTRAL': # Only show if not neutral
             whale_sentiment = general_whale.get('sentiment', 'N/A')
             critical_alert = general_whale.get('critical_alert', False)
             lines.append(f"• General Whale Sentiment: {whale_sentiment.replace('_', ' ').title() if isinstance(whale_sentiment, str) else 'N/A'}")
             if critical_alert:
                 lines.append("  ⚠️ CRITICAL WHALE ALERT ACTIVE")

        return "\n".join(lines)


    async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
        try:
            symbol = trade_data['symbol']
            original_strategy = trade_data.get('strategy', 'GENERIC')

            ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv')
            if not ohlcv_data:
                print(f"⚠️ لا توجد بيانات شموع محدثة لـ {symbol} - تخطي إعادة التحليل")
                return None

            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            pattern_analysis = await self._get_pattern_analysis(processed_data)
            whale_data = processed_data.get('whale_data', {})

            # 🔴 جديد: الحصول على تغذية راجعة لإعادة التحليل
            best_learned_exit = "None"
            learning_feedback = "No learning data for re-analysis."
            if self.learning_engine and self.learning_engine.initialized:
                best_learned_exit = await self.learning_engine.get_best_exit_profile(original_strategy)
                if best_learned_exit != "unknown":
                    learning_feedback = f"Learning System Feedback: For the '{original_strategy}' strategy, the '{best_learned_exit}' exit profile is typically best. Does this still apply?"

            prompt = self._create_re_analysis_prompt(trade_data, processed_data, news_text, pattern_analysis, whale_data, learning_feedback)

            if self.r2_service:
                analysis_data = {
                    'symbol': symbol,
                    'entry_price': trade_data.get('entry_price'),
                    'current_price': processed_data.get('current_price'),
                    'original_strategy': original_strategy,
                    'learning_feedback_provided': learning_feedback, # 🔴 جديد
                    'pattern_analysis': pattern_analysis, 
                    'whale_data_available': whale_data.get('data_available', False)
                }
                await self.r2_service.save_llm_prompts_async(
                    symbol, 'trade_reanalysis_v2', prompt, analysis_data
                )

            async with self.semaphore:
                response = await self._call_llm(prompt)

            re_analysis_dict = self._parse_re_analysis_response(response, original_strategy, symbol)
            if re_analysis_dict:
                re_analysis_dict['model_source'] = self.model_name
                re_analysis_dict['whale_data_integrated'] = whale_data.get('data_available', False)
                return re_analysis_dict
            else:
                print(f"❌ فشل إعادة تحليل النموذج الضخم لـ {symbol}")
                return None

        except Exception as e:
            print(f"❌ خطأ في إعادة تحليل LLM: {e}")
            traceback.print_exc()
            return None

    def _parse_re_analysis_response(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
        try:
            json_str = parse_json_from_response(response_text)
            if not json_str:
                return None

            decision_data = safe_json_parse(json_str)
            if not decision_data:
                 print(f"❌ فشل تحليل JSON (safe_json_parse) لإعادة التحليل لـ {symbol}: {response_text}")
                 return None

            action = decision_data.get('action')
            if action not in ['HOLD', 'CLOSE_TRADE', 'UPDATE_TRADE']:
                 print(f"⚠️ النموذج اقترح إجراء إعادة تحليل غير مدعوم ({action}) لـ {symbol}. سيتم اعتباره HOLD.")
                 decision_data['action'] = 'HOLD'

            # 🔴 تحديث: إذا كان UPDATE_TRADE، يجب أن يتضمن ملف خروج جديد
            if action == 'UPDATE_TRADE':
                required_update_fields = ['new_stop_loss', 'new_take_profit', 'new_exit_profile', 'new_exit_parameters']
                if not validate_required_fields(decision_data, required_update_fields):
                    print(f"❌ حقول مطلوبة مفقودة لـ UPDATE_TRADE لـ {symbol}")
                    missing = [f for f in required_update_fields if f not in decision_data]
                    print(f"   MIA: {missing}")
                    decision_data['action'] = 'HOLD' # العودة إلى HOLD إذا كان التحديث غير مكتمل
                elif not isinstance(decision_data['new_exit_parameters'], dict):
                    print(f"❌ الحقل 'new_exit_parameters' ليس قاموساً صالحاً لـ {symbol}")
                    decision_data['action'] = 'HOLD'


            strategy_value = decision_data.get('strategy')
            if not strategy_value or strategy_value == 'unknown':
                decision_data['strategy'] = fallback_strategy

            return decision_data
        except Exception as e:
            print(f"Error parsing re-analysis response for {symbol}: {e}")
            return None

    def _create_re_analysis_prompt(self, trade_data: dict, processed_data: dict, news_text: str, pattern_analysis: dict, whale_data: dict, learning_feedback: str) -> str:
        symbol = trade_data.get('symbol', 'N/A')
        entry_price = trade_data.get('entry_price', 'N/A')
        current_price = processed_data.get('current_price', 'N/A')
        strategy = trade_data.get('strategy', 'GENERIC')
        original_trade_type = "LONG" # SPOT only
        
        # 🔴 جديد: جلب ملف الخروج الحالي
        current_exit_profile = trade_data.get('decision_data', {}).get('exit_profile', 'N/A')
        current_exit_params = json.dumps(trade_data.get('decision_data', {}).get('exit_parameters', {}))
        
        # 🔴 جديد: إضافة التغذية الراجعة للتعلم
        learning_feedback_section = f"🧠 LEARNING ENGINE FEEDBACK:\n{learning_feedback}"

        try:
            price_change = ((current_price - entry_price) / entry_price) * 100 if entry_price else 0
            price_change_display = f"{price_change:+.2f}%"
        except (TypeError, ZeroDivisionError):
            price_change_display = "N/A"

        indicators_summary = format_technical_indicators(processed_data.get('advanced_indicators', {}))
        pattern_summary = self._format_pattern_analysis(pattern_analysis) if pattern_analysis else "Pattern analysis data not available for re-analysis."
        whale_analysis_section = format_whale_analysis_for_llm(whale_data)
        market_context_section = self._format_market_context(processed_data.get('sentiment_data', {}))
        ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv', {})
        candle_data_section = self._format_candle_data_comprehensive(ohlcv_data)


        prompt = f"""
TRADE RE-ANALYSIS FOR {symbol} (SPOT ONLY - Currently Open LONG Position)

🚨 IMPORTANT SYSTEM CONSTRAINT: This is a SPOT TRADING system ONLY. The open trade is LONG. Re-analysis should decide to HOLD, CLOSE, or UPDATE this LONG position. SHORT selling is NOT possible.

📊 CURRENT TRADE CONTEXT:
- Strategy: {strategy}
- Entry Price: {entry_price} (LONG position)
- Current Price: {current_price}
- Current Performance: {price_change_display}
- Trade Age: {trade_data.get('hold_duration_minutes', 'N/A')} minutes
- Current Exit Profile: {current_exit_profile}
- Current Exit Parameters: {current_exit_params}

{learning_feedback_section}

🔄 UPDATED TECHNICAL ANALYSIS:
{indicators_summary}

📈 UPDATED RAW CANDLE DATA SUMMARY & STATISTICS:
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}

🔍 UPDATED PATTERN ANALYSIS RESULTS (From System):
{pattern_summary}

🐋 UPDATED WHALE ACTIVITY:
{whale_analysis_section}

🌍 UPDATED MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this re-analysis."}

📰 LATEST NEWS:
{news_text if news_text else "No significant news found"}

🎯 RE-ANALYSIS INSTRUCTIONS (SPOT - LONG POSITION):

1.  **ANALYZE UPDATED DATA:** Evaluate if the original LONG thesis still holds based on the updated raw candle data summary, technicals, patterns (provided above), whale activity, market context, and learning feedback.
2.  **VALIDATE PATTERNS:** Consider the 'UPDATED PATTERN ANALYSIS RESULTS' provided. Does the recent price action confirm or invalidate these patterns?
3.  **DECIDE ACTION (HOLD/CLOSE/UPDATE):** Based on the comprehensive analysis, decide whether to HOLD, CLOSE_TRADE (exit the LONG position), or UPDATE_TRADE (adjust SL/TP and/or the Exit Profile for the LONG position).
4.  **IF UPDATING (CRITICAL):** If action is UPDATE_TRADE, you MUST provide:
    -   `new_stop_loss` (New hard stop)
    -   `new_take_profit` (New final target)
    -   `new_exit_profile`: (e.g., "ATR_TRAILING") - Can be the same or different.
    -   `new_exit_parameters`: (e.g., {{"atr_multiplier": 1.5}}) - Must match the new profile.
5.  **PROVIDE DETAILS:** Justify your decision clearly, integrating all data points.

CRITICAL: The decision must be one of HOLD, CLOSE_TRADE, or UPDATE_TRADE for the existing LONG position.

OUTPUT FORMAT (JSON - SPOT RE-ANALYSIS):
{{
    "action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
    "reasoning": "Comprehensive justification for HOLD, CLOSE, or UPDATE of the LONG position, based on updated analysis. If UPDATE, explain why the new exit profile/parameters are better.",
    
    "new_stop_loss": 0.000000, # (Required if UPDATE_TRADE, else 0)
    "new_take_profit": 0.000000, # (Required if UPDATE_TRADE, else 0)
    "new_exit_profile": "None", # (Required if UPDATE_TRADE, else "None")
    "new_exit_parameters": {{}}, # (Required if UPDATE_TRADE, else {{}})
    
    "new_expected_minutes": 15, # If action is UPDATE_TRADE or HOLD (new expectation), else 0
    "confidence_level": 0.85, # Confidence in the re-analysis decision
    "strategy": "{strategy}", # Original strategy context
    "whale_influence_reanalysis": "How updated whale data influenced the decision",
    "pattern_influence_reanalysis": "How updated candle patterns AND provided patterns influenced the decision",
    "risk_adjustment": "low/medium/high" # Current risk level if HOLDING
}}
"""
        return prompt
        
    # ❗ دالة _format_pattern_analysis مُضافة هنا لأنها أُزيلت من الأعلى
    def _format_pattern_analysis(self, pattern_analysis):
        """تنسيق تحليل الأنماط للنموذج الضخم"""
        if not pattern_analysis or not pattern_analysis.get('pattern_detected') or pattern_analysis.get('pattern_detected') == 'no_clear_pattern':
            return "No clear chart pattern detected by the system."

        pattern = pattern_analysis.get('pattern_detected', 'N/A')
        confidence = pattern_analysis.get('pattern_confidence', 0)
        direction = pattern_analysis.get('predicted_direction', 'N/A')
        timeframe = pattern_analysis.get('timeframe', 'N/A')

        return f"System Pattern Analysis: Detected '{pattern}' on {timeframe} timeframe with {confidence:.2f} confidence. Predicted direction: {direction}."

    @_rate_limit_nvidia_api
    async def _call_llm(self, prompt: str) -> str:
        try:
            # Simple retry mechanism within the call for non-rate limit errors
            for attempt in range(2): # Try twice
                try:
                    response = self.client.chat.completions.create(
                        model=self.model_name,
                        messages=[{"role": "user", "content": prompt}],
                        temperature=self.temperature,
                        seed=int(time.time()), # Use time for seed
                        max_tokens=4000 
                    )
                    content = response.choices[0].message.content
                    if content and '{' in content and '}' in content:
                        return content
                    else:
                        print(f"⚠️ LLM returned invalid content (attempt {attempt+1}): {content[:100]}...")
                        if attempt == 0: await asyncio.sleep(1) 

                except (RateLimitError, APITimeoutError) as e:
                    print(f"❌ LLM API Error (Rate Limit/Timeout): {e}. Retrying via backoff...")
                    raise 
                except Exception as e:
                    print(f"❌ Unexpected LLM API error (attempt {attempt+1}): {e}")
                    if attempt == 0: await asyncio.sleep(2) 
                    elif attempt == 1: raise 

            print("❌ LLM failed to return valid content after retries.")
            return "" 

        except Exception as e:
            print(f"❌ Final failure in _call_llm after backoff retries: {e}")
            raise 

print("✅ LLM Service loaded - V2 (Dynamic Exit Profiles & Learning Feedback)")