File size: 39,820 Bytes
aaaa707 77b5042 3b07030 90767a7 53cf6c0 90767a7 53c587a aaaa707 53cf6c0 53c587a 53cf6c0 90767a7 53cf6c0 77b5042 3b07030 632c1d5 3b07030 53cf6c0 77b5042 1af938b 77b5042 3b07030 1af938b 3b07030 632c1d5 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 53c587a 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 3b07030 77b5042 53c587a 77b5042 3b07030 53cf6c0 aaaa707 53cf6c0 aaaa707 3b07030 53cf6c0 aaaa707 53cf6c0 632c1d5 aaaa707 53cf6c0 3b07030 632c1d5 53cf6c0 3b07030 491d9d6 77b5042 3b07030 491d9d6 3b07030 77b5042 3b07030 53c587a 77b5042 3b07030 53c587a 491d9d6 3b07030 53cf6c0 1af938b 3b07030 aaaa707 3b07030 632c1d5 1af938b 632c1d5 aaaa707 1af938b 77b5042 491d9d6 1af938b 632c1d5 aaaa707 632c1d5 3b07030 632c1d5 3b07030 53cf6c0 1af938b 77b5042 491d9d6 90767a7 632c1d5 3b07030 53cf6c0 632c1d5 1af938b 632c1d5 3b07030 90767a7 53cf6c0 90767a7 3b07030 1af938b 632c1d5 53cf6c0 aa957eb 3b07030 aa957eb aaaa707 3b07030 1af938b aaaa707 632c1d5 53cf6c0 3b07030 53c587a 3b07030 53c587a 3b07030 53cf6c0 3b07030 632c1d5 53cf6c0 1af938b 53cf6c0 491d9d6 1af938b 53c587a 53cf6c0 53c587a 53cf6c0 3b07030 aaaa707 53cf6c0 491d9d6 3b07030 1af938b aaaa707 53cf6c0 90767a7 1af938b aaaa707 1af938b aaaa707 53cf6c0 1af938b 3b07030 1af938b aaaa707 1af938b 53c587a 1af938b 53c587a 1af938b 53c587a 1af938b 53c587a 1af938b 53c587a 1af938b aaaa707 1af938b 53c587a aaaa707 1af938b aaaa707 3b07030 53c587a aaaa707 53c587a aaaa707 1af938b 53cf6c0 3b07030 1af938b 77b5042 1af938b 77b5042 3b07030 1af938b 77b5042 3b07030 1af938b 53c587a 1af938b 77b5042 3b07030 1af938b 3b07030 77b5042 3b07030 53c587a 3b07030 53c587a 3b07030 1af938b 77b5042 1af938b 53c587a 1af938b 53c587a 77b5042 3b07030 53c587a 3b07030 1af938b 3b07030 1af938b 53c587a 3b07030 53c587a 3b07030 1af938b 53c587a 3b07030 53c587a 1af938b 3b07030 1af938b 53c587a 3b07030 1af938b 3b07030 1af938b 53c587a 3b07030 1af938b 53c587a 3b07030 1af938b 53c587a 1af938b 3b07030 1af938b 53c587a 3b07030 1af938b 20dc709 53c587a 53cf6c0 3b07030 491d9d6 77b5042 3b07030 53cf6c0 1af938b 3b07030 aaaa707 3b07030 632c1d5 1af938b 632c1d5 aaaa707 1af938b 632c1d5 aaaa707 632c1d5 3b07030 632c1d5 3b07030 90767a7 53cf6c0 1af938b 90767a7 632c1d5 1af938b 632c1d5 3b07030 53cf6c0 632c1d5 1af938b 632c1d5 53cf6c0 90767a7 53cf6c0 90767a7 3b07030 632c1d5 53cf6c0 aa957eb 3b07030 53c587a aa957eb aaaa707 53cf6c0 3b07030 632c1d5 53cf6c0 90767a7 53cf6c0 aaaa707 53cf6c0 53c587a aaaa707 3b07030 53c587a 632c1d5 3b07030 632c1d5 3b07030 90767a7 53c587a 1af938b 53c587a 53cf6c0 53c587a 3b07030 53c587a 1af938b 53c587a 1af938b 3b07030 1af938b 53c587a 1af938b aaaa707 1af938b 53c587a 1af938b 53c587a 1af938b 3b07030 1af938b aaaa707 1af938b aaaa707 3b07030 1af938b 53c587a aaaa707 53c587a 3b07030 53c587a aaaa707 53c587a 1af938b 53cf6c0 aaaa707 53cf6c0 53c587a aaaa707 53c587a aaaa707 53c587a aaaa707 53c587a aaaa707 53c587a aaaa707 53c587a 53cf6c0 53c587a aaaa707 1af938b aaaa707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# LLM.py (محدث بالكامل مع ملفات الخروج الديناميكية والتغذية الراجعة)
import os, traceback, asyncio, json, time
import re # ✅ استيراد مكتبة re
from datetime import datetime
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError
import numpy as np
from sentiment_news import NewsFetcher
from helpers import validate_required_fields, format_technical_indicators, format_strategy_scores, format_candle_data_for_pattern_analysis, format_whale_analysis_for_llm, parse_json_from_response
from ml_engine.processor import safe_json_parse
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"
class PatternAnalysisEngine:
# --- (كود PatternAnalysisEngine كما هو بدون تغيير) ---
def __init__(self, llm_service):
self.llm = llm_service
def _format_chart_data_for_llm(self, ohlcv_data):
"""تنسيق شامل لبيانات الشموع الخام لتحليل الأنماط"""
if not ohlcv_data:
return "Insufficient chart data for pattern analysis"
try:
# استخدام جميع الأطر الزمنية المتاحة مع البيانات الخام
all_timeframes = []
for timeframe, candles in ohlcv_data.items():
if candles and len(candles) >= 10: # تخفيف الشرط من 20 إلى 10 شموع
# تمرير البيانات الخام مباشرة للنموذج
raw_candle_summary = self._format_raw_candle_data(candles, timeframe)
all_timeframes.append(f"=== {timeframe.upper()} TIMEFRAME ({len(candles)} CANDLES) ===\n{raw_candle_summary}")
return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
except Exception as e:
return f"Error formatting chart data: {str(e)}"
def _format_raw_candle_data(self, candles, timeframe):
"""تنسيق بيانات الشموع الخام بشكل مفصل للنموذج"""
try:
if len(candles) < 10:
return f"Only {len(candles)} candles available - insufficient for deep pattern analysis"
# أخذ آخر 50 شمعة كحد أقصى لتجنب السياق الطويل جداً
analysis_candles = candles[-50:] if len(candles) > 50 else candles
summary = []
summary.append(f"Total candles: {len(candles)} (showing last {len(analysis_candles)})")
summary.append("Recent candles (newest to oldest):")
# عرض آخر 15 شمعة بالتفصيل
for i in range(min(15, len(analysis_candles))):
idx = len(analysis_candles) - 1 - i
candle = analysis_candles[idx]
# تحويل الطابع الزمني
try:
timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%Y-%m-%d %H:%M:%S')
except:
timestamp = "unknown"
open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5]
candle_type = "🟢 BULLISH" if close > open_price else "🔴 BEARISH" if close < open_price else "⚪ NEUTRAL"
body_size = abs(close - open_price)
body_percent = (body_size / open_price * 100) if open_price > 0 else 0
wick_upper = high - max(open_price, close)
wick_lower = min(open_price, close) - low
total_range = high - low
if total_range > 0:
body_ratio = (body_size / total_range) * 100
upper_wick_ratio = (wick_upper / total_range) * 100
lower_wick_ratio = (wick_lower / total_range) * 100
else:
body_ratio = upper_wick_ratio = lower_wick_ratio = 0
summary.append(f"{i+1:2d}. {timestamp} | {candle_type}")
summary.append(f" O:{open_price:.8f} H:{high:.8f} L:{low:.8f} C:{close:.8f}")
summary.append(f" Body: {body_percent:.2f}% | Body/Range: {body_ratio:.1f}%")
summary.append(f" Wicks: Upper {upper_wick_ratio:.1f}% / Lower {lower_wick_ratio:.1f}%")
summary.append(f" Volume: {volume:,.0f}")
# إضافة تحليل إحصائي
if len(analysis_candles) >= 20:
stats = self._calculate_candle_statistics(analysis_candles)
summary.append(f"\n📊 STATISTICAL ANALYSIS:")
summary.append(f"• Price Change: {stats['price_change']:+.2f}%")
summary.append(f"• Average Body Size: {stats['avg_body']:.4f}%")
summary.append(f"• Volatility (ATR): {stats['atr']:.6f}")
summary.append(f"• Trend: {stats['trend']}")
summary.append(f"• Support: {stats['support']:.6f}")
summary.append(f"• Resistance: {stats['resistance']:.6f}")
return "\n".join(summary)
except Exception as e:
return f"Error formatting raw candle data: {str(e)}"
def _calculate_candle_statistics(self, candles):
"""حساب الإحصائيات الأساسية للشموع"""
try:
closes = [c[4] for c in candles]
opens = [c[1] for c in candles]
highs = [c[2] for c in candles]
lows = [c[3] for c in candles]
# حساب التغير في السعر
first_close = closes[0]
last_close = closes[-1]
price_change = ((last_close - first_close) / first_close) * 100
# حساب متوسط حجم الجسم
body_sizes = [abs(close - open) for open, close in zip(opens, closes)]
avg_body = (sum(body_sizes) / len(body_sizes)) / first_close * 100 if first_close > 0 else 0 # Handle potential ZeroDivisionError
# حساب ATR مبسط
true_ranges = []
for i in range(1, len(candles)):
high, low, prev_close = highs[i], lows[i], closes[i-1]
tr1 = high - low
tr2 = abs(high - prev_close)
tr3 = abs(low - prev_close)
true_ranges.append(max(tr1, tr2, tr3))
atr = sum(true_ranges) / len(true_ranges) if true_ranges else 0
# تحديد الاتجاه
if price_change > 3:
trend = "STRONG UPTREND"
elif price_change > 1:
trend = "UPTREND"
elif price_change < -3:
trend = "STRONG DOWNTREND"
elif price_change < -1:
trend = "DOWNTREND"
else:
trend = "SIDEWAYS"
# مستويات الدعم والمقاومة المبسطة
support = min(lows)
resistance = max(highs)
return {
'price_change': price_change,
'avg_body': avg_body,
'atr': atr,
'trend': trend,
'support': support,
'resistance': resistance
}
except Exception as e:
# Provide default values in case of calculation error
return {
'price_change': 0,
'avg_body': 0,
'atr': 0,
'trend': 'UNKNOWN',
'support': 0,
'resistance': 0
}
async def analyze_chart_patterns(self, symbol, ohlcv_data):
pass
def _parse_pattern_response(self, response_text):
pass
class LLMService:
def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
self.api_key = api_key
self.model_name = model_name
self.temperature = temperature
self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
self.news_fetcher = NewsFetcher()
self.pattern_engine = PatternAnalysisEngine(self)
self.semaphore = asyncio.Semaphore(5)
self.r2_service = None # سيتم تعيينه من app.py
self.learning_engine = None # 🔴 جديد: سيتم تعيينه من app.py
def _rate_limit_nvidia_api(func):
@wraps(func)
@on_exception(expo, RateLimitError, max_tries=5)
async def wrapper(*args, **kwargs):
return await func(*args, **kwargs)
return wrapper
async def get_trading_decision(self, data_payload: dict):
try:
symbol = data_payload.get('symbol', 'unknown')
target_strategy = data_payload.get('target_strategy', 'GENERIC')
ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
if not ohlcv_data:
print(f"⚠️ لا توجد بيانات شموع لـ {symbol} - تخطي التحليل")
return None
total_candles = sum(len(data) for data in ohlcv_data.values() if data) if ohlcv_data else 0
timeframes_count = len([tf for tf, data in ohlcv_data.items() if data and len(data) >= 10]) if ohlcv_data else 0
print(f" 📊 بيانات {symbol}: {total_candles} شمعة في {timeframes_count} إطار زمني")
if total_candles < 30:
print(f" ⚠️ بيانات شموع غير كافية لـ {symbol}: {total_candles} شمعة فقط")
return None
valid_timeframes = [tf for tf, candles in ohlcv_data.items() if candles and len(candles) >= 5]
if not valid_timeframes:
print(f" ⚠️ لا توجد أطر زمنية صالحة لـ {symbol}")
return None
print(f" ✅ أطر زمنية صالحة لـ {symbol}: {', '.join(valid_timeframes)}")
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
whale_data = data_payload.get('whale_data', {})
# 🔴 جديد: الحصول على تغذية راجعة من محرك التعلم
best_learned_exit = "None"
learning_feedback = "No learning data yet."
if self.learning_engine and self.learning_engine.initialized:
best_learned_exit = await self.learning_engine.get_best_exit_profile(target_strategy)
if best_learned_exit != "unknown":
learning_feedback = f"Learning System Feedback: For the '{target_strategy}' strategy, the '{best_learned_exit}' exit profile has historically performed best. Please consider this."
prompt = self._create_comprehensive_trading_prompt(data_payload, news_text, None, whale_data, learning_feedback)
if self.r2_service:
analysis_data = {
'symbol': symbol,
'current_price': data_payload.get('current_price'),
'final_score': data_payload.get('final_score'),
'enhanced_final_score': data_payload.get('enhanced_final_score'),
'target_strategy': target_strategy,
'learning_feedback_provided': learning_feedback, # 🔴 جديد
'whale_data_available': whale_data.get('data_available', False),
'total_candles': total_candles,
'timeframes_count': timeframes_count,
'valid_timeframes': valid_timeframes,
'timestamp': datetime.now().isoformat()
}
await self.r2_service.save_llm_prompts_async(
symbol, 'comprehensive_trading_decision_v2', prompt, analysis_data
)
async with self.semaphore:
response = await self._call_llm(prompt)
decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
if decision_dict:
decision_dict['model_source'] = self.model_name
decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
decision_dict['total_candles_analyzed'] = total_candles
decision_dict['timeframes_analyzed'] = timeframes_count
return decision_dict
else:
print(f"❌ فشل تحليل النموذج الضخم لـ {symbol} - لا توجد قرارات بديلة")
return None
except Exception as e:
print(f"❌ خطأ في قرار التداول لـ {data_payload.get('symbol', 'unknown')}: {e}")
traceback.print_exc()
return None
def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str:
print(f"❌ فشل استخراج JSON من استجابة النموذج لـ {symbol}")
return None
decision_data = safe_json_parse(json_str)
if not decision_data:
print(f"❌ فشل تحليل JSON (safe_json_parse) لـ {symbol}: {response_text}")
return None
# 🔴 تحديث: إضافة الحقول الجديدة للخروج
required_fields = [
'action', 'reasoning', 'risk_assessment', 'stop_loss', 'take_profit',
'expected_target_minutes', 'confidence_level', 'pattern_identified_by_llm',
'exit_profile', 'exit_parameters'
]
if not validate_required_fields(decision_data, required_fields):
print(f"❌ حقول مطلوبة مفقودة في استجابة النموذج لـ {symbol}")
# طباعة الحقول المفقودة
missing = [f for f in required_fields if f not in decision_data]
print(f" MIA: {missing}")
return None
# 🔴 التحقق من exit_parameters
if not isinstance(decision_data['exit_parameters'], dict):
print(f"❌ الحقل 'exit_parameters' ليس قاموساً (dict) صالحاً لـ {symbol}")
return None
action = decision_data.get('action')
if action not in ['BUY', 'HOLD']:
print(f"⚠️ النموذج اقترح إجراء غير مدعوم ({action}) لـ {symbol}. سيتم اعتباره HOLD.")
decision_data['action'] = 'HOLD'
if decision_data['action'] == 'BUY':
decision_data['trade_type'] = 'LONG'
else:
decision_data['trade_type'] = None
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown':
decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"❌ خطأ في تحليل استجابة النموذج لـ {symbol}: {e}")
return None
async def _get_pattern_analysis(self, data_payload):
try:
symbol = data_payload['symbol']
ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
if ohlcv_data:
return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
return None
except Exception as e:
print(f"❌ فشل تحليل الأنماط (قد يكون لإعادة التحليل) لـ {data_payload.get('symbol')}: {e}")
return None
def _create_comprehensive_trading_prompt(self, payload: dict, news_text: str, pattern_analysis: dict, whale_data: dict, learning_feedback: str) -> str:
symbol = payload.get('symbol', 'N/A')
current_price = payload.get('current_price', 'N/A')
reasons = payload.get('reasons_for_candidacy', [])
sentiment_data = payload.get('sentiment_data', {})
advanced_indicators = payload.get('advanced_indicators', {})
strategy_scores = payload.get('strategy_scores', {})
recommended_strategy = payload.get('recommended_strategy', 'N/A')
target_strategy = payload.get('target_strategy', 'GENERIC')
final_score = payload.get('final_score', 'N/A')
enhanced_final_score = payload.get('enhanced_final_score', 'N/A')
ohlcv_data = payload.get('raw_ohlcv') or payload.get('ohlcv', {})
final_score_display = f"{final_score:.3f}" if isinstance(final_score, (int, float)) else str(final_score)
enhanced_score_display = f"{enhanced_score_display:.3f}" if isinstance(enhanced_score, (int, float)) else str(enhanced_score)
indicators_summary = format_technical_indicators(advanced_indicators)
strategies_summary = format_strategy_scores(strategy_scores, recommended_strategy)
whale_analysis_section = format_whale_analysis_for_llm(whale_data)
candle_data_section = self._format_candle_data_comprehensive(ohlcv_data)
market_context_section = self._format_market_context(sentiment_data)
# 🔴 جديد: إضافة التغذية الراجعة للتعلم
learning_feedback_section = f"🧠 LEARNING ENGINE FEEDBACK:\n{learning_feedback}"
prompt = f"""
COMPREHENSIVE TRADING ANALYSIS FOR {symbol}
🚨 IMPORTANT SYSTEM CONSTRAINT: This is a SPOT TRADING system ONLY. Decisions MUST be limited to BUY (LONG) or HOLD. SHORT selling is NOT possible.
🎯 STRATEGY CONTEXT:
- Target Strategy: {target_strategy}
- Recommended Strategy: {recommended_strategy}
- Current Price: ${current_price}
- System Score: {final_score_display}
- Enhanced Score: {enhanced_score_display}
{learning_feedback_section}
📊 TECHNICAL INDICATORS (ALL TIMEFRAMES):
{indicators_summary}
📈 RAW CANDLE DATA SUMMARY & STATISTICS (FOR YOUR PATTERN ANALYSIS):
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}
🎯 STRATEGY ANALYSIS (System's recommendation based on various factors):
{strategies_summary}
🐋 WHALE ACTIVITY ANALYSIS:
{whale_analysis_section}
🌍 MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this analysis."}
📰 LATEST NEWS:
{news_text if news_text else "No significant news found"}
📋 REASONS FOR SYSTEM CANDIDACY (Layer 1 & 2 Screening):
{chr(10).join([f"• {reason}" for reason in reasons]) if reasons else "No specific reasons provided"}
🎯 TRADING DECISION INSTRUCTIONS (SPOT ONLY - LLM MUST ANALYZE PATTERNS AND DEFINE EXIT STRATEGY):
1. **PERFORM CHART PATTERN ANALYSIS:** Based *ONLY* on the provided 'RAW CANDLE DATA SUMMARY & STATISTICS' section above, identify relevant chart patterns (Triangles, Flags, Head & Shoulders, etc.) and candlestick patterns (Engulfing, Doji, etc.).
2. **INTEGRATE ALL DATA:** Combine YOUR pattern analysis with technicals, strategy analysis, whale activity, market context, news, and the 'LEARNING ENGINE FEEDBACK'.
3. **ADHERE STRICTLY TO SPOT TRADING RULES:** Only decide 'BUY' (LONG) or 'HOLD'. DO NOT suggest 'SELL'.
4. **DEFINE EXIT STRATEGY (CRITICAL):** If (and only if) action is 'BUY', you MUST define the dynamic exit strategy (Exit Profile) and its parameters. This profile will be executed by a separate tactical bot.
- `"exit_profile"`: Choose one: "ATR_TRAILING" (Recommended for trends/breakouts), "FIXED_TARGET" (Recommended for mean reversion/scalping), "TIME_BASED" (Exit after X minutes regardless), "SIGNAL_BASED" (Emergency exit on opposite signal - *Use with caution*).
- `"exit_parameters"`: Define parameters for the chosen profile.
- For "ATR_TRAILING": {{"atr_multiplier": 2.0, "atr_period": 14, "break_even_trigger_percent": 1.5}} (break_even_trigger_percent moves stop to entry when profit hits 1.5%)
- For "FIXED_TARGET": {{"time_stop_minutes": 120}} (Hard stop if target not hit in 120 mins)
- For "TIME_BASED": {{"exit_after_minutes": 60}}
- For "SIGNAL_BASED": {{"emergency_volume_spike_multiplier": 5.0}} (Exit if reverse volume spike > 5x average)
5. **DEFINE HARD STOPS:** You must still provide the initial "hard" stop_loss (catastrophic failure stop) and the final "take_profit" target. The dynamic exit profile operates *within* these boundaries.
OUTPUT FORMAT (JSON - SPOT ONLY - INCLUDE EXIT PROFILE):
{{
"action": "BUY/HOLD",
"reasoning": "Detailed explanation integrating ALL data sources, starting with the patterns identified from the candle summary, and justifying the BUY or HOLD decision. Explain *why* the chosen exit_profile is appropriate.",
"pattern_identified_by_llm": "Name of the primary pattern(s) identified (e.g., 'Bull Flag on 1H', 'No Clear Pattern')",
"pattern_influence": "Explain how the identified pattern(s) influenced the decision.",
"risk_assessment": "low/medium/high",
"stop_loss": 0.000000, # Required if action is BUY (Hard stop loss), 0 if HOLD
"take_profit": 0.000000, # Required if action is BUY (Final target), 0 if HOLD
"exit_profile": "FIXED_TARGET", # (Required if BUY, "None" if HOLD). Choose from: "ATR_TRAILING", "FIXED_TARGET", "TIME_BASED", "SIGNAL_BASED"
"exit_parameters": {{ "time_stop_minutes": 120 }}, # (Required if BUY, {{}} if HOLD). Must match the chosen exit_profile.
"expected_target_minutes": 15, # Required if action is BUY (Time to reach final TP), 0 if HOLD
"confidence_level": 0.85, # Confidence in the BUY or HOLD decision
"strategy": "{target_strategy}", # The strategy context provided
"whale_influence": "How whale data influenced the BUY/HOLD decision",
"key_support_level": 0.000000, # Derived from candle data analysis
"key_resistance_level": 0.000000, # Derived from candle data analysis
"risk_reward_ratio": 2.5 # Calculated for the HARD SL/TP, 0 if HOLD
}}
"""
return prompt
def _format_candle_data_comprehensive(self, ohlcv_data):
"""تنسيق شامل لبيانات الشموع الخام"""
if not ohlcv_data:
return "No raw candle data available for analysis"
try:
timeframes_available = []
total_candles = 0
for timeframe, candles in ohlcv_data.items():
if candles and len(candles) >= 5:
timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)")
total_candles += len(candles)
if not timeframes_available:
return "Insufficient candle data across all timeframes"
summary = f"📊 Available Timeframes: {', '.join(timeframes_available)}\n"
summary += f"📈 Total Candles Available: {total_candles}\n\n"
raw_candle_analysis_text = self.pattern_engine._format_chart_data_for_llm(ohlcv_data)
summary += raw_candle_analysis_text
return summary
except Exception as e:
return f"Error formatting raw candle data: {str(e)}"
def _analyze_timeframe_candles(self, candles, timeframe):
"""تحليل الشموع لإطار زمني محدد - (تستخدم داخلياً بواسطة _format_raw_candle_data)"""
try:
if len(candles) < 10:
return f"Insufficient data ({len(candles)} candles)"
recent_candles = candles[-15:]
closes = [c[4] for c in recent_candles]
opens = [c[1] for c in recent_candles]
highs = [c[2] for c in recent_candles]
lows = [c[3] for c in recent_candles]
volumes = [c[5] for c in recent_candles]
current_price = closes[-1]
first_price = closes[0]
price_change = ((current_price - first_price) / first_price) * 100 if first_price > 0 else 0
if price_change > 2: trend = "🟢 UPTREND"
elif price_change < -2: trend = "🔴 DOWNTREND"
else: trend = "⚪ SIDEWAYS"
high_max = max(highs)
low_min = min(lows)
volatility = ((high_max - low_min) / low_min) * 100 if low_min > 0 else 0
avg_volume = sum(volumes) / len(volumes) if volumes else 1
current_volume = volumes[-1] if volumes else 0
volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1
green_candles = sum(1 for i in range(len(closes)) if closes[i] > opens[i])
red_candles = len(closes) - green_candles
candle_ratio = green_candles / len(closes) if closes else 0
analysis = [
f"📈 Trend: {trend} ({price_change:+.2f}%)",
f"🌊 Volatility: {volatility:.2f}%",
f"📦 Volume: {volume_ratio:.2f}x average",
f"🕯️ Candles: {green_candles}🟢/{red_candles}🔴 ({candle_ratio:.1%} green)",
f"💰 Range: {low_min:.6f} - {high_max:.6f}",
f"🎯 Current: {current_price:.6f}"
]
return "\n".join(analysis)
except Exception as e:
return f"Analysis error: {str(e)}"
def _format_market_context(self, sentiment_data):
"""تنسيق سياق السوق"""
if not sentiment_data or sentiment_data.get('data_quality', 'LOW') == 'LOW':
return "Market context data not available or incomplete."
btc_sentiment = sentiment_data.get('btc_sentiment', 'N/A')
fear_greed = sentiment_data.get('fear_and_greed_index', 'N/A')
market_trend = sentiment_data.get('market_trend', 'N/A') # e.g., 'bull_market', 'bear_market', 'sideways_market'
lines = [
f"• Bitcoin Sentiment: {btc_sentiment}",
f"• Fear & Greed Index: {fear_greed} ({sentiment_data.get('sentiment_class', 'Neutral')})",
f"• Overall Market Trend: {market_trend.replace('_', ' ').title() if isinstance(market_trend, str) else 'N/A'}"
]
general_whale = sentiment_data.get('general_whale_activity', {})
if general_whale and general_whale.get('sentiment') != 'NEUTRAL': # Only show if not neutral
whale_sentiment = general_whale.get('sentiment', 'N/A')
critical_alert = general_whale.get('critical_alert', False)
lines.append(f"• General Whale Sentiment: {whale_sentiment.replace('_', ' ').title() if isinstance(whale_sentiment, str) else 'N/A'}")
if critical_alert:
lines.append(" ⚠️ CRITICAL WHALE ALERT ACTIVE")
return "\n".join(lines)
async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
try:
symbol = trade_data['symbol']
original_strategy = trade_data.get('strategy', 'GENERIC')
ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv')
if not ohlcv_data:
print(f"⚠️ لا توجد بيانات شموع محدثة لـ {symbol} - تخطي إعادة التحليل")
return None
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
pattern_analysis = await self._get_pattern_analysis(processed_data)
whale_data = processed_data.get('whale_data', {})
# 🔴 جديد: الحصول على تغذية راجعة لإعادة التحليل
best_learned_exit = "None"
learning_feedback = "No learning data for re-analysis."
if self.learning_engine and self.learning_engine.initialized:
best_learned_exit = await self.learning_engine.get_best_exit_profile(original_strategy)
if best_learned_exit != "unknown":
learning_feedback = f"Learning System Feedback: For the '{original_strategy}' strategy, the '{best_learned_exit}' exit profile is typically best. Does this still apply?"
prompt = self._create_re_analysis_prompt(trade_data, processed_data, news_text, pattern_analysis, whale_data, learning_feedback)
if self.r2_service:
analysis_data = {
'symbol': symbol,
'entry_price': trade_data.get('entry_price'),
'current_price': processed_data.get('current_price'),
'original_strategy': original_strategy,
'learning_feedback_provided': learning_feedback, # 🔴 جديد
'pattern_analysis': pattern_analysis,
'whale_data_available': whale_data.get('data_available', False)
}
await self.r2_service.save_llm_prompts_async(
symbol, 'trade_reanalysis_v2', prompt, analysis_data
)
async with self.semaphore:
response = await self._call_llm(prompt)
re_analysis_dict = self._parse_re_analysis_response(response, original_strategy, symbol)
if re_analysis_dict:
re_analysis_dict['model_source'] = self.model_name
re_analysis_dict['whale_data_integrated'] = whale_data.get('data_available', False)
return re_analysis_dict
else:
print(f"❌ فشل إعادة تحليل النموذج الضخم لـ {symbol}")
return None
except Exception as e:
print(f"❌ خطأ في إعادة تحليل LLM: {e}")
traceback.print_exc()
return None
def _parse_re_analysis_response(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str:
return None
decision_data = safe_json_parse(json_str)
if not decision_data:
print(f"❌ فشل تحليل JSON (safe_json_parse) لإعادة التحليل لـ {symbol}: {response_text}")
return None
action = decision_data.get('action')
if action not in ['HOLD', 'CLOSE_TRADE', 'UPDATE_TRADE']:
print(f"⚠️ النموذج اقترح إجراء إعادة تحليل غير مدعوم ({action}) لـ {symbol}. سيتم اعتباره HOLD.")
decision_data['action'] = 'HOLD'
# 🔴 تحديث: إذا كان UPDATE_TRADE، يجب أن يتضمن ملف خروج جديد
if action == 'UPDATE_TRADE':
required_update_fields = ['new_stop_loss', 'new_take_profit', 'new_exit_profile', 'new_exit_parameters']
if not validate_required_fields(decision_data, required_update_fields):
print(f"❌ حقول مطلوبة مفقودة لـ UPDATE_TRADE لـ {symbol}")
missing = [f for f in required_update_fields if f not in decision_data]
print(f" MIA: {missing}")
decision_data['action'] = 'HOLD' # العودة إلى HOLD إذا كان التحديث غير مكتمل
elif not isinstance(decision_data['new_exit_parameters'], dict):
print(f"❌ الحقل 'new_exit_parameters' ليس قاموساً صالحاً لـ {symbol}")
decision_data['action'] = 'HOLD'
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown':
decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"Error parsing re-analysis response for {symbol}: {e}")
return None
def _create_re_analysis_prompt(self, trade_data: dict, processed_data: dict, news_text: str, pattern_analysis: dict, whale_data: dict, learning_feedback: str) -> str:
symbol = trade_data.get('symbol', 'N/A')
entry_price = trade_data.get('entry_price', 'N/A')
current_price = processed_data.get('current_price', 'N/A')
strategy = trade_data.get('strategy', 'GENERIC')
original_trade_type = "LONG" # SPOT only
# 🔴 جديد: جلب ملف الخروج الحالي
current_exit_profile = trade_data.get('decision_data', {}).get('exit_profile', 'N/A')
current_exit_params = json.dumps(trade_data.get('decision_data', {}).get('exit_parameters', {}))
# 🔴 جديد: إضافة التغذية الراجعة للتعلم
learning_feedback_section = f"🧠 LEARNING ENGINE FEEDBACK:\n{learning_feedback}"
try:
price_change = ((current_price - entry_price) / entry_price) * 100 if entry_price else 0
price_change_display = f"{price_change:+.2f}%"
except (TypeError, ZeroDivisionError):
price_change_display = "N/A"
indicators_summary = format_technical_indicators(processed_data.get('advanced_indicators', {}))
pattern_summary = self._format_pattern_analysis(pattern_analysis) if pattern_analysis else "Pattern analysis data not available for re-analysis."
whale_analysis_section = format_whale_analysis_for_llm(whale_data)
market_context_section = self._format_market_context(processed_data.get('sentiment_data', {}))
ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv', {})
candle_data_section = self._format_candle_data_comprehensive(ohlcv_data)
prompt = f"""
TRADE RE-ANALYSIS FOR {symbol} (SPOT ONLY - Currently Open LONG Position)
🚨 IMPORTANT SYSTEM CONSTRAINT: This is a SPOT TRADING system ONLY. The open trade is LONG. Re-analysis should decide to HOLD, CLOSE, or UPDATE this LONG position. SHORT selling is NOT possible.
📊 CURRENT TRADE CONTEXT:
- Strategy: {strategy}
- Entry Price: {entry_price} (LONG position)
- Current Price: {current_price}
- Current Performance: {price_change_display}
- Trade Age: {trade_data.get('hold_duration_minutes', 'N/A')} minutes
- Current Exit Profile: {current_exit_profile}
- Current Exit Parameters: {current_exit_params}
{learning_feedback_section}
🔄 UPDATED TECHNICAL ANALYSIS:
{indicators_summary}
📈 UPDATED RAW CANDLE DATA SUMMARY & STATISTICS:
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}
🔍 UPDATED PATTERN ANALYSIS RESULTS (From System):
{pattern_summary}
🐋 UPDATED WHALE ACTIVITY:
{whale_analysis_section}
🌍 UPDATED MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this re-analysis."}
📰 LATEST NEWS:
{news_text if news_text else "No significant news found"}
🎯 RE-ANALYSIS INSTRUCTIONS (SPOT - LONG POSITION):
1. **ANALYZE UPDATED DATA:** Evaluate if the original LONG thesis still holds based on the updated raw candle data summary, technicals, patterns (provided above), whale activity, market context, and learning feedback.
2. **VALIDATE PATTERNS:** Consider the 'UPDATED PATTERN ANALYSIS RESULTS' provided. Does the recent price action confirm or invalidate these patterns?
3. **DECIDE ACTION (HOLD/CLOSE/UPDATE):** Based on the comprehensive analysis, decide whether to HOLD, CLOSE_TRADE (exit the LONG position), or UPDATE_TRADE (adjust SL/TP and/or the Exit Profile for the LONG position).
4. **IF UPDATING (CRITICAL):** If action is UPDATE_TRADE, you MUST provide:
- `new_stop_loss` (New hard stop)
- `new_take_profit` (New final target)
- `new_exit_profile`: (e.g., "ATR_TRAILING") - Can be the same or different.
- `new_exit_parameters`: (e.g., {{"atr_multiplier": 1.5}}) - Must match the new profile.
5. **PROVIDE DETAILS:** Justify your decision clearly, integrating all data points.
CRITICAL: The decision must be one of HOLD, CLOSE_TRADE, or UPDATE_TRADE for the existing LONG position.
OUTPUT FORMAT (JSON - SPOT RE-ANALYSIS):
{{
"action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
"reasoning": "Comprehensive justification for HOLD, CLOSE, or UPDATE of the LONG position, based on updated analysis. If UPDATE, explain why the new exit profile/parameters are better.",
"new_stop_loss": 0.000000, # (Required if UPDATE_TRADE, else 0)
"new_take_profit": 0.000000, # (Required if UPDATE_TRADE, else 0)
"new_exit_profile": "None", # (Required if UPDATE_TRADE, else "None")
"new_exit_parameters": {{}}, # (Required if UPDATE_TRADE, else {{}})
"new_expected_minutes": 15, # If action is UPDATE_TRADE or HOLD (new expectation), else 0
"confidence_level": 0.85, # Confidence in the re-analysis decision
"strategy": "{strategy}", # Original strategy context
"whale_influence_reanalysis": "How updated whale data influenced the decision",
"pattern_influence_reanalysis": "How updated candle patterns AND provided patterns influenced the decision",
"risk_adjustment": "low/medium/high" # Current risk level if HOLDING
}}
"""
return prompt
# ❗ دالة _format_pattern_analysis مُضافة هنا لأنها أُزيلت من الأعلى
def _format_pattern_analysis(self, pattern_analysis):
"""تنسيق تحليل الأنماط للنموذج الضخم"""
if not pattern_analysis or not pattern_analysis.get('pattern_detected') or pattern_analysis.get('pattern_detected') == 'no_clear_pattern':
return "No clear chart pattern detected by the system."
pattern = pattern_analysis.get('pattern_detected', 'N/A')
confidence = pattern_analysis.get('pattern_confidence', 0)
direction = pattern_analysis.get('predicted_direction', 'N/A')
timeframe = pattern_analysis.get('timeframe', 'N/A')
return f"System Pattern Analysis: Detected '{pattern}' on {timeframe} timeframe with {confidence:.2f} confidence. Predicted direction: {direction}."
@_rate_limit_nvidia_api
async def _call_llm(self, prompt: str) -> str:
try:
# Simple retry mechanism within the call for non-rate limit errors
for attempt in range(2): # Try twice
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
seed=int(time.time()), # Use time for seed
max_tokens=4000
)
content = response.choices[0].message.content
if content and '{' in content and '}' in content:
return content
else:
print(f"⚠️ LLM returned invalid content (attempt {attempt+1}): {content[:100]}...")
if attempt == 0: await asyncio.sleep(1)
except (RateLimitError, APITimeoutError) as e:
print(f"❌ LLM API Error (Rate Limit/Timeout): {e}. Retrying via backoff...")
raise
except Exception as e:
print(f"❌ Unexpected LLM API error (attempt {attempt+1}): {e}")
if attempt == 0: await asyncio.sleep(2)
elif attempt == 1: raise
print("❌ LLM failed to return valid content after retries.")
return ""
except Exception as e:
print(f"❌ Final failure in _call_llm after backoff retries: {e}")
raise
print("✅ LLM Service loaded - V2 (Dynamic Exit Profiles & Learning Feedback)") |