File size: 28,656 Bytes
6dec69a 952bf71 6a4cb30 585273b c7c1fc7 8fb1e4e 97b50d2 1b1414d 97b50d2 fa58d6b 33d4073 fa58d6b 33d4073 fa58d6b 33d4073 1b1414d a01528e c7c1fc7 a01528e 9aa9464 a01528e 60168e1 1b1414d c3cfdec 1b1414d c3cfdec 6a4cb30 c3cfdec 2ecc875 c3cfdec 1e59082 667edc4 fa58d6b 33d4073 fa58d6b 1b1414d 33d4073 1b1414d 585273b a01528e d480654 667edc4 9aa9464 1b1414d 9aa9464 1b1414d 9c58061 1b1414d 9c58061 1b1414d 9c58061 1b1414d 9c58061 1b1414d 9c58061 1b1414d 9aa9464 6dec69a 24495bd 667edc4 1b1414d 2ecc875 93d8db3 667edc4 2ecc875 1b1414d 667edc4 a01528e 1b1414d db0d805 1b1414d 24495bd 585273b d480654 1b1414d 24495bd 1b1414d 24495bd 1b1414d 585273b 24495bd 585273b d480654 24495bd 1b1414d 24495bd 1b1414d 24495bd 1b1414d fa58d6b d480654 fa58d6b 5dfcbf0 fa58d6b 5dfcbf0 c3cfdec 1b1414d d480654 1b1414d c3cfdec fa58d6b 5dfcbf0 c3cfdec 1b1414d fa58d6b 1b1414d fa58d6b c3cfdec 1b1414d 5dfcbf0 d480654 5dfcbf0 fa58d6b 82a1a9b d480654 1b1414d 1e59082 1b1414d a01528e 33d4073 fa58d6b 1b1414d fa58d6b 1b1414d fa58d6b 24495bd 33d4073 24495bd 33d4073 6a4cb30 1b1414d 33d4073 1b1414d 97b50d2 fa58d6b 1b1414d 6a4cb30 33d4073 6a4cb30 97b50d2 33d4073 6a4cb30 1b1414d 97b50d2 1b1414d 24495bd 1b1414d 33d4073 1b1414d fa58d6b 33d4073 fa58d6b 33d4073 1b1414d 33d4073 1b1414d 33d4073 fa58d6b 1b1414d 33d4073 1b1414d 33d4073 1b1414d ace2d50 33d4073 5f0f8a5 33d4073 5f0f8a5 9c58061 5f0f8a5 33d4073 1b1414d ace2d50 33d4073 cf306f1 1b1414d 9c58061 1b1414d 33d4073 1b1414d cda0397 33d4073 cda0397 1b1414d ace2d50 33d4073 97b50d2 1b1414d 97b50d2 1b1414d 97b50d2 1b1414d fa58d6b 1b1414d 97b50d2 a97dc52 fa58d6b 5e06e3f a97dc52 fa58d6b 5e06e3f fa58d6b 5e06e3f a97dc52 fa58d6b a97dc52 5e06e3f fa58d6b 5e06e3f 1b1414d a97dc52 5e06e3f a97dc52 5e06e3f fa58d6b 5e06e3f a97dc52 fa58d6b a97dc52 5e06e3f fa58d6b 5e06e3f 1b1414d a97dc52 5e06e3f 99679e1 1b1414d 5e06e3f 84a279b 47a0054 5e06e3f 84a279b 5e06e3f 47a0054 84a279b 5e06e3f 84a279b 5e06e3f 47a0054 5e06e3f 35778df 84a279b aed8c82 5e06e3f 84a279b fa58d6b 5e06e3f 19236f5 eb8d95c a631ae8 5e06e3f 1b1414d fa58d6b 5e06e3f 776410b 5e06e3f 776410b 93d8db3 5e06e3f 1b1414d 5e06e3f 35778df fa58d6b 93d8db3 1b1414d 5e06e3f 6dec69a 5e06e3f 6dec69a 5e06e3f 6dec69a 5e06e3f 64b02cc 5e06e3f 64b02cc 6dec69a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# data_manager.py (Updated to V10.2 - Whale Learning Data Link)
import os
import asyncio
import httpx
import traceback
import time
from datetime import datetime
import ccxt
import numpy as np
import logging
from typing import List, Dict, Any
import pandas as pd
try:
import pandas_ta as ta
except ImportError:
print("⚠️ مكتبة pandas_ta غير موجودة. النظام سيفشل.")
ta = None
# (V10.0) استيراد العقل الحسابي المطور
from ml_engine.indicators import AdvancedTechnicalAnalyzer
# (V10.0) استيراد مونت كارلو المطور
from ml_engine.monte_carlo import MonteCarloAnalyzer
from ml_engine.patterns import ChartPatternAnalyzer
# (V9.1) استيراد "العقل الذكي"
from ml_engine.ranker import Layer1Ranker
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
class DataManager:
def __init__(self, contracts_db, whale_monitor, r2_service=None):
self.contracts_db = contracts_db or {}
self.whale_monitor = whale_monitor
self.r2_service = r2_service
try:
self.exchange = ccxt.kucoin({
'sandbox': False, 'enableRateLimit': True,
'timeout': 30000, 'verbose': False,
})
print("✅ تم تهيئة اتصال KuCoin بنجاح")
except Exception as e:
print(f"❌ فشل تهيئة اتصال KuCoin: {e}")
self.exchange = None
self.http_client = None
self.market_cache = {}
self.last_market_load = None
# (V10.0) تهيئة العقول الحسابية
self.technical_analyzer = AdvancedTechnicalAnalyzer()
self.pattern_analyzer = None
self.mc_analyzer = MonteCarloAnalyzer()
# (V9.1) تهيئة "العقل الذكي" (النموذج)
self.layer1_ranker = None
async def initialize(self):
self.http_client = httpx.AsyncClient(timeout=30.0)
await self._load_markets()
print(" > [DataManager] تهيئة محرك الأنماط V8 (ML-Based)...")
try:
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=self.r2_service)
await self.pattern_analyzer.initialize()
except Exception as e:
print(f"❌ [DataManager] فشل تهيئة محرك الأنماط V8: {e}")
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=None)
print(" > [DataManager] تهيئة الكاشف المصغر (Layer1 Ranker V9.8)...")
try:
# (تأكد من أن النموذج V9.8 موجود ومسمى بهذا الاسم)
model_file_path = "ml_models/layer1_ranker.lgbm"
self.layer1_ranker = Layer1Ranker(model_path=model_file_path)
await self.layer1_ranker.initialize()
if self.layer1_ranker.model is None:
print(" ⚠️ [DataManager V9.8] الرانكر في وضع 'وهمي' (Placeholder).")
else:
print(f" ✅ [DataManager V9.8] الرانكر {self.layer1_ranker.model_name} جاهز للعمل.")
except Exception as e:
print(f"❌ [DataManager V9.8] فشل تهيئة الرانكر V9.8: {e}")
self.layer1_ranker = None
print("✅ DataManager initialized - V10.2 (Whale Learning Data Link)")
async def _load_markets(self):
try:
if not self.exchange: return
print("🔄 جلب أحدث بيانات الأسواق من KuCoin...")
self.exchange.load_markets()
self.market_cache = self.exchange.markets
self.last_market_load = datetime.now()
print(f"✅ تم تحميل {len(self.market_cache)} سوق من KuCoin")
except Exception as e: print(f"❌ فشل تحميل بيانات الأسواق: {e}")
async def close(self):
if self.http_client and not self.http_client.is_closed: await self.http_client.aclose()
if self.exchange:
try: await self.exchange.close()
except Exception: pass
async def get_market_context_async(self):
try:
sentiment_data = await self.get_sentiment_safe_async()
price_data = await self._get_prices_with_fallback()
bitcoin_price = price_data.get('bitcoin'); ethereum_price = price_data.get('ethereum')
return {
'timestamp': datetime.now().isoformat(),
'bitcoin_price_usd': bitcoin_price, 'ethereum_price_usd': ethereum_price,
'fear_and_greed_index': sentiment_data.get('feargreed_value') if sentiment_data else None,
'sentiment_class': sentiment_data.get('feargreed_class') if sentiment_data else 'NEUTRAL',
'market_trend': self._determine_market_trend(bitcoin_price, sentiment_data),
'btc_sentiment': self._get_btc_sentiment(bitcoin_price),
'data_quality': 'HIGH' if bitcoin_price and ethereum_price else 'LOW'
}
except Exception as e: return self._get_minimal_market_context()
async def get_sentiment_safe_async(self):
try:
async with httpx.AsyncClient(timeout=10) as client:
response = await client.get("https://api.alternative.me/fng/")
response.raise_for_status(); data = response.json()
if 'data' not in data or not data['data']: raise ValueError("بيانات المشاعر غير متوفرة")
latest_data = data['data'][0]
return { "feargreed_value": int(latest_data['value']), "feargreed_class": latest_data['value_classification'], "source": "alternative.me", "timestamp": datetime.now().isoformat() }
except Exception as e: return None
def _determine_market_trend(self, bitcoin_price, sentiment_data):
if bitcoin_price is None: return "UNKNOWN"
if bitcoin_price > 60000: score = 1
elif bitcoin_price < 55000: score = -1
else: score = 0
if sentiment_data and sentiment_data.get('feargreed_value') is not None:
fear_greed = sentiment_data.get('feargreed_value')
if fear_greed > 60: score += 1
elif fear_greed < 40: score -= 1
if score >= 1: return "bull_market"
elif score <= -1: return "bear_market"
else: return "sideways_market"
def _get_btc_sentiment(self, bitcoin_price):
if bitcoin_price is None: return 'UNKNOWN'
elif bitcoin_price > 60000: return 'BULLISH'
elif bitcoin_price < 55000: return 'BEARISH'
else: return 'NEUTRAL'
async def _get_prices_with_fallback(self):
try:
prices = await self._get_prices_from_kucoin_safe()
if prices.get('bitcoin') and prices.get('ethereum'): return prices
return await self._get_prices_from_coingecko()
except Exception as e: return {'bitcoin': None, 'ethereum': None}
async def _get_prices_from_kucoin_safe(self):
if not self.exchange: return {'bitcoin': None, 'ethereum': None}
try:
prices = {'bitcoin': None, 'ethereum': None}
btc_ticker = self.exchange.fetch_ticker('BTC/USDT'); btc_price = float(btc_ticker.get('last', 0)) if btc_ticker.get('last') else None
if btc_price and btc_price > 0: prices['bitcoin'] = btc_price
eth_ticker = self.exchange.fetch_ticker('ETH/USDT'); eth_price = float(eth_ticker.get('last', 0)) if eth_ticker.get('last') else None
if eth_price and eth_price > 0: prices['ethereum'] = eth_price
return prices
except Exception as e: return {'bitcoin': None, 'ethereum': None}
async def _get_prices_from_coingecko(self):
try:
await asyncio.sleep(0.5)
url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin,ethereum&vs_currencies=usd"
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36', 'Accept': 'application/json'}
async with httpx.AsyncClient(headers=headers) as client:
response = await client.get(url, timeout=10)
if response.status_code == 429: await asyncio.sleep(2); response = await client.get(url, timeout=10)
response.raise_for_status(); data = response.json()
btc_price = data.get('bitcoin', {}).get('usd'); eth_price = data.get('ethereum', {}).get('usd')
if btc_price and eth_price: return {'bitcoin': btc_price, 'ethereum': eth_price}
else: return {'bitcoin': None, 'ethereum': None}
except Exception as e: return {'bitcoin': None, 'ethereum': None}
def _get_minimal_market_context(self):
return { 'timestamp': datetime.now().isoformat(), 'data_available': False, 'market_trend': 'UNKNOWN', 'btc_sentiment': 'UNKNOWN', 'data_quality': 'LOW' }
def _create_dataframe(self, candles: List) -> pd.DataFrame:
"""(V9.1) إنشاء DataFrame (تحتاج 200 شمعة للميزات)"""
try:
if not candles: return pd.DataFrame()
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
df.set_index('timestamp', inplace=True)
df.sort_index(inplace=True)
return df
except Exception as e:
print(f"❌ خطأ في إنشاء DataFrame: {e}")
return pd.DataFrame()
async def layer1_rapid_screening(self) -> List[Dict[str, Any]]:
"""
الطبقة 1: فحص سريع - (محدث V10.1)
- إصلاح مونت كارلو المفقود.
- استخدام عتبة التوازن 53% (0.53) التي اخترتها.
"""
print("📊 الطبقة 1 (V10.1 - Balanced 53% + MC Fix): بدء الغربلة...")
if not self.layer1_ranker:
print("❌ [V10.1] الرانكر غير مهيأ. إيقاف الغربلة.")
return []
# الخطوة 1: جلب أفضل 100 عملة حسب الحجم
volume_data = await self._get_volume_data_optimal()
if not volume_data: volume_data = await self._get_volume_data_direct_api()
if not volume_data:
print("❌ [V10.1] فشل جلب بيانات الأحجام.")
return []
volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True)
top_100_by_volume = volume_data[:100]
print(f"✅ [V10.1] تم تحديد أفضل {len(top_100_by_volume)} عملة. بدء حساب الميزات الذكية...")
final_candidates_with_scores = []
batch_symbols_data = top_100_by_volume
batch_symbols = [s['symbol'] for s in batch_symbols_data]
# الخطوة 2: جلب بيانات 1H (200 شمعة)
tasks = [self._fetch_1h_ohlcv_for_screening(symbol, limit=200) for symbol in batch_symbols]
results_candles = await asyncio.gather(*tasks, return_exceptions=True)
valid_symbol_data_for_ranking = []
for j, (candles) in enumerate(results_candles):
symbol_data = batch_symbols_data[j]
if isinstance(candles, Exception) or not candles or len(candles) < 200: continue
symbol_data['ohlcv_1h_raw'] = candles
valid_symbol_data_for_ranking.append(symbol_data)
if not valid_symbol_data_for_ranking:
print("❌ [V10.1] لا توجد عملات صالحة (تحتاج 200 شمعة 1H).")
return []
print(f" 🔄 [V10.1] حساب الميزات (الذكية + مونت كارلو) لـ {len(valid_symbol_data_for_ranking)} عملة...")
# الخطوة 3: حساب "الميزات الذكية V9.8" (الكاملة)
all_features_list = []
symbols_in_order = []
for symbol_data in valid_symbol_data_for_ranking:
try:
df = self._create_dataframe(symbol_data['ohlcv_1h_raw'])
if df.empty: continue
# (أ. حساب الميزات الذكية V9.8 - من indicators.py)
smart_features = self.technical_analyzer.calculate_v9_smart_features(df)
if not smart_features:
# (فشل حساب الميزات الرئيسية، تجاهل العملة)
continue
# 🔴 --- (V10.0 - الإصلاح) --- 🔴
# (ب. حساب ميزات مونت كارلو V9.8 - من monte_carlo.py)
# (نستخدم آخر 100 شمعة فقط للمحاكاة البسيطة كما في التدريب)
closes_np = df['close'].tail(100).to_numpy()
mc_features = self.mc_analyzer.generate_1h_price_distribution_simple(closes_np)
# (إضافة ميزات مونت كارلو إلى قاموس الميزات)
smart_features['mc_prob_gain'] = mc_features['mc_prob_gain']
smart_features['mc_var_95_pct'] = mc_features['mc_var_95_pct']
# 🔴 --- (نهاية الإصلاح) --- 🔴
all_features_list.append(smart_features)
symbols_in_order.append(symbol_data)
except Exception:
pass # (تجاهل العملة إذا فشل أي جزء)
if not all_features_list:
print("❌ [V10.1] فشل حساب الميزات الذكية.")
return []
# الخطوة 4: التنبؤ (التصنيف)
print(f" 🧠 [V10.1] إرسال {len(all_features_list)} عملة إلى نموذج الرانكر...")
features_dataframe = pd.DataFrame(all_features_list)
probabilities = self.layer1_ranker.predict_proba(features_dataframe)
# (الطباعة التشخيصية)
print(f" 🔍 [V10.1 DEBUG] تم استلام {len(probabilities)} نتيجة من الرانكر.")
debug_scores = []
for i, (symbol_data) in enumerate(symbols_in_order):
debug_scores.append((symbol_data['symbol'], probabilities[i]))
debug_scores.sort(key=lambda x: x[1], reverse=True)
print(" --- 📋 [V10.1 DEBUG] أعلى 10 درجات خام (قبل الفلترة) ---")
for i, (symbol, score) in enumerate(debug_scores[:10]):
print(f" {i+1}. {symbol}: {score:.4f}")
print(" -------------------------------------------------")
# الخطوة 5: تجميع النتائج (مع عتبة التوازن 53%)
for i, (symbol_data) in enumerate(symbols_in_order):
score = probabilities[i]
# 🔴 (V10.1: عتبة التوازن 53% - بناءً على اختيارك) 🔴
if score >= 0.50:
symbol = symbol_data['symbol']
print(f" ✅ {symbol}: نجح (الاحتمالية: {score:.3f})")
symbol_data['layer1_score'] = float(score)
symbol_data['reasons_for_candidacy'] = ["V9_SMART_RANKER_BALANCED_53"]
if 'ohlcv_1h_raw' in symbol_data: del symbol_data['ohlcv_1h_raw']
final_candidates_with_scores.append(symbol_data)
print(f"🎯 اكتملت الغربلة (V10.1). تم تأهيل {len(final_candidates_with_scores)} عملة (ثقة >= 53%).")
if final_candidates_with_scores:
final_candidates_with_scores.sort(key=lambda x: x['layer1_score'], reverse=True)
print("🏆 المرشحون الناجحون (Top Candidates):")
for k, candidate in enumerate(final_candidates_with_scores[:5]):
print(f" {k+1}. {candidate['symbol']}: (Score: {candidate.get('layer1_score'):.3f})")
else:
print("⚠️ [V10.1] لم تنجح أي عملة في تجاوز عتبة الثقة 53%.")
return final_candidates_with_scores[:20]
async def _fetch_1h_ohlcv_for_screening(self, symbol: str, limit: int = 200) -> List:
try:
ohlcv_data = self.exchange.fetch_ohlcv(symbol, '1h', limit=limit)
if not ohlcv_data or len(ohlcv_data) < limit: return None
return ohlcv_data
except Exception: return None
async def _get_volume_data_optimal(self) -> List[Dict[str, Any]]:
try:
if not self.exchange: return []
tickers = self.exchange.fetch_tickers()
volume_data = []
for symbol, ticker in tickers.items():
if not symbol.endswith('/USDT') or not ticker.get('active', True): continue
current_price = ticker.get('last', 0)
quote_volume = ticker.get('quoteVolume', 0)
if current_price is None or current_price <= 0: continue
if quote_volume is not None and quote_volume > 0:
dollar_volume = quote_volume
else:
base_volume = ticker.get('baseVolume', 0)
if base_volume is None: continue
dollar_volume = base_volume * current_price
if dollar_volume is None or dollar_volume < 50000: continue
price_change_24h = ticker.get('percentage', 0) or 0
volume_data.append({
'symbol': symbol,
'dollar_volume': dollar_volume,
'current_price': current_price,
'volume_24h': ticker.get('baseVolume', 0) or 0,
'price_change_24h': price_change_24h
})
print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المثلى")
return volume_data
except Exception as e:
print(f"❌ خطأ في جلب بيانات الحجم المثلى: {e}")
return []
async def _get_volume_data_direct_api(self) -> List[Dict[str, Any]]:
try:
url = "https://api.kucoin.com/api/v1/market/allTickers"
async with httpx.AsyncClient(timeout=15) as client:
response = await client.get(url)
response.raise_for_status()
data = response.json()
if data.get('code') != '200000': raise ValueError(f"استجابة API غير متوقعة: {data.get('code')}")
tickers = data['data']['ticker']
volume_data = []
for ticker in tickers:
symbol = ticker['symbol']
if not symbol.endswith('USDT'): continue
formatted_symbol = symbol.replace('-', '/')
try:
vol_value = ticker.get('volValue')
last_price = ticker.get('last')
change_rate = ticker.get('changeRate')
vol = ticker.get('vol')
if vol_value is None or last_price is None or change_rate is None or vol is None: continue
dollar_volume = float(vol_value) if vol_value else 0
current_price = float(last_price) if last_price else 0
price_change = (float(change_rate) * 100) if change_rate else 0
volume_24h = float(vol) if vol else 0
if dollar_volume >= 50000 and current_price > 0:
volume_data.append({
'symbol': formatted_symbol,
'dollar_volume': dollar_volume,
'current_price': current_price,
'volume_24h': volume_24h,
'price_change_24h': price_change
})
except (ValueError, TypeError, KeyError):
continue
print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المباشرة")
return volume_data
except Exception as e:
print(f"❌ خطأ في جلب بيانات الحجم المباشر: {e}")
return []
async def stream_ohlcv_data(self, symbols: List[Dict[str, Any]], queue: asyncio.Queue):
print(f"📊 بدء تدفق بيانات OHLCV (الكاملة) لـ {len(symbols)} عملة (مصنفة)...")
batch_size = 15
batches = [symbols[i:i + batch_size] for i in range(0, len(symbols), batch_size)]
total_successful = 0
for batch_num, batch in enumerate(batches):
print(f" 🔄 [المنتج] جلب الدفعة {batch_num + 1}/{len(batches)} ({len(batch)} عملة)...")
batch_tasks = []
for symbol_data in batch:
symbol_str = symbol_data['symbol']
task = asyncio.create_task(self._fetch_complete_ohlcv_parallel(symbol_str))
batch_tasks.append(task)
batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True)
successful_data_for_batch = []
for i, result in enumerate(batch_results):
original_symbol_data = batch[i]
symbol_str = original_symbol_data['symbol']
if isinstance(result, Exception):
print(f" ❌ [المنتج] فشل جلب {symbol_str}: {result}")
elif result is not None:
result.update(original_symbol_data)
successful_data_for_batch.append(result)
print(f" ✅ [المنتج] {symbol_str}: {result.get('successful_timeframes', 0)}/6 أطر زمنية")
else:
print(f" ⚠️ [المنتج] {symbol_str}: بيانات غير كافية، تم التجاهل")
if successful_data_for_batch:
try:
await queue.put(successful_data_for_batch)
total_successful += len(successful_data_for_batch)
except Exception as q_err:
print(f" ❌ [المنتج] فشل إرسال الدفعة للطابور: {q_err}")
if batch_num < len(batches) - 1:
await asyncio.sleep(1) # (إضافة تأخير بسيط بين الدفعات)
print(f"✅ [المنتج] اكتمل التدفق. تم إرسال {total_successful} عملة للمعالجة.")
await queue.put(None)
print(" 📬 [المنتج] تم إرسال إشارة الإنهاء (None) إلى الطابور.")
async def _fetch_complete_ohlcv_parallel(self, symbol: str) -> Dict[str, Any]:
try:
ohlcv_data = {}
timeframes = [('5m', 200), ('15m', 200), ('1h', 200), ('4h', 200), ('1d', 200), ('1w', 200)]
timeframe_tasks = []
for timeframe, limit in timeframes:
task = asyncio.create_task(self._fetch_single_timeframe_improved(symbol, timeframe, limit))
timeframe_tasks.append(task)
timeframe_results = await asyncio.gather(*timeframe_tasks, return_exceptions=True)
successful_timeframes = 0
for i, (timeframe, limit) in enumerate(timeframes):
result = timeframe_results[i]
if isinstance(result, Exception): continue
if result and len(result) >= 200: # (التأكد من وجود بيانات كافية)
ohlcv_data[timeframe] = result
successful_timeframes += 1
if successful_timeframes >= 3 and ohlcv_data: # (نحتاج 3 أطر زمنية على الأقل)
try:
current_price = await self.get_latest_price_async(symbol)
if current_price is None:
# (محاولة احتياطية للحصول على السعر من آخر شمعة)
for tf_data in ohlcv_data.values():
if tf_data and len(tf_data) > 0: current_price = tf_data[-1][4]; break
if current_price is None: return None
return {
'symbol': symbol,
'ohlcv': ohlcv_data,
'raw_ohlcv': ohlcv_data,
'current_price': current_price,
'timestamp': datetime.now().isoformat(),
'candles_count': {tf: len(data) for tf, data in ohlcv_data.items()},
'successful_timeframes': successful_timeframes
}
except Exception:
return None
else:
return None
except Exception:
return None
async def _fetch_single_timeframe_improved(self, symbol: str, timeframe: str, limit: int):
max_retries = 3
retry_delay = 2
for attempt in range(max_retries):
try:
ohlcv_data = self.exchange.fetch_ohlcv(symbol, timeframe, limit=limit)
if ohlcv_data and len(ohlcv_data) > 0:
return ohlcv_data
else:
return []
except Exception:
if attempt < max_retries - 1:
await asyncio.sleep(retry_delay * (attempt + 1))
else:
return []
async def get_latest_price_async(self, symbol):
try:
if not self.exchange: return None
ticker = self.exchange.fetch_ticker(symbol)
return float(ticker['last']) if ticker and ticker.get('last') else None
except Exception:
return None
# 🔴 --- START OF CHANGE (V10.2) --- 🔴
async def get_symbol_daily_volume(self, symbol: str) -> float:
"""
(جديد) دالة مساعدة لجلب حجم التداول اليومي (بالدولار) لعملة واحدة.
(تستخدم في إعادة التحليل).
"""
try:
if not self.exchange: return 0.0
ticker = self.exchange.fetch_ticker(symbol)
if not ticker: return 0.0
current_price = ticker.get('last', 0)
quote_volume = ticker.get('quoteVolume', 0)
if quote_volume is not None and quote_volume > 0:
return float(quote_volume)
elif current_price is not None and current_price > 0:
base_volume = ticker.get('baseVolume', 0)
if base_volume is not None:
return float(base_volume) * float(current_price)
return 0.0
except Exception:
return 0.0
async def get_whale_data_for_symbol(self, symbol: str, daily_volume_usd: float = 0.0):
"""
(محدث V10.2)
تمرير حجم التداول اليومي إلى مراقب الحيتان لتفعيل المقاييس النسبية.
"""
try:
if self.whale_monitor:
return await self.whale_monitor.get_symbol_whale_activity(symbol, daily_volume_usd=daily_volume_usd)
else:
return None
except Exception:
return None
# 🔴 --- END OF CHANGE --- 🔴
async def get_whale_trading_signal(self, symbol, whale_data, market_context):
try:
return await self.whale_monitor.generate_whale_trading_signal(symbol, whale_data, market_context) if self.whale_monitor else {'action': 'HOLD', 'confidence': 0.3, 'reason': 'Whale monitor not available', 'source': 'whale_analysis'}
except Exception as e:
return {'action': 'HOLD', 'confidence': 0.3, 'reason': f'Error: {str(e)}', 'source': 'whale_analysis'}
print("✅ DataManager loaded - V10.2 (Whale Learning Data Link)") |