File size: 15,802 Bytes
079f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# ml_engine/indicators.py
import pandas as pd
import pandas_ta as ta
import numpy as np

class AdvancedTechnicalAnalyzer:
    def __init__(self):
        self.indicators_config = {
            'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
            'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
            'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
            'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
            'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
        }
    
    def calculate_all_indicators(self, dataframe, timeframe):
        """حساب جميع المؤشرات الفنية للإطار الزمني المحدد"""
        if dataframe.empty or dataframe is None: 
            return {}
        
        indicators = {}
        
        try:
            indicators.update(self._calculate_trend_indicators(dataframe))
            indicators.update(self._calculate_momentum_indicators(dataframe))
            indicators.update(self._calculate_volatility_indicators(dataframe))
            indicators.update(self._calculate_volume_indicators(dataframe, timeframe))
            indicators.update(self._calculate_cycle_indicators(dataframe))
        except Exception as e:
            print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}")
        
        return indicators
    
    def _calculate_trend_indicators(self, dataframe):
        """حساب مؤشرات الاتجاه"""
        trend = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # المتوسطات المتحركة
            if len(dataframe) >= 9: 
                ema_9 = ta.ema(dataframe['close'], length=9)
                if ema_9 is not None and not ema_9.empty and not pd.isna(ema_9.iloc[-1]): 
                    trend['ema_9'] = float(ema_9.iloc[-1])
            
            if len(dataframe) >= 21: 
                ema_21 = ta.ema(dataframe['close'], length=21)
                if ema_21 is not None and not ema_21.empty and not pd.isna(ema_21.iloc[-1]): 
                    trend['ema_21'] = float(ema_21.iloc[-1])
            
            if len(dataframe) >= 50: 
                ema_50 = ta.ema(dataframe['close'], length=50)
                if ema_50 is not None and not ema_50.empty and not pd.isna(ema_50.iloc[-1]): 
                    trend['ema_50'] = float(ema_50.iloc[-1])
            
            if len(dataframe) >= 200: 
                ema_200 = ta.ema(dataframe['close'], length=200)
                if ema_200 is not None and not ema_200.empty and not pd.isna(ema_200.iloc[-1]): 
                    trend['ema_200'] = float(ema_200.iloc[-1])
            
            # إيشيموكو
            if len(dataframe) >= 26:
                try:
                    ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
                    if ichimoku is not None and len(ichimoku) > 0:
                        # التحقق من أن ichimoku ليس None وأنه يحتوي على بيانات
                        conversion_line = ichimoku[0].get('ITS_9') if ichimoku[0] is not None else None
                        base_line = ichimoku[0].get('IKS_26') if ichimoku[0] is not None else None
                        
                        if conversion_line is not None and not conversion_line.empty and not pd.isna(conversion_line.iloc[-1]): 
                            trend['ichimoku_conversion'] = float(conversion_line.iloc[-1])
                        if base_line is not None and not base_line.empty and not pd.isna(base_line.iloc[-1]): 
                            trend['ichimoku_base'] = float(base_line.iloc[-1])
                except Exception as ichimoku_error:
                    print(f"⚠️ خطأ في حساب إيشيموكو: {ichimoku_error}")
            
            # ADX - قوة الاتجاه
            if len(dataframe) >= 14:
                try:
                    adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                    if adx_result is not None and not adx_result.empty:
                        adx_value = adx_result.get('ADX_14')
                        if adx_value is not None and not adx_value.empty and not pd.isna(adx_value.iloc[-1]): 
                            trend['adx'] = float(adx_value.iloc[-1])
                except Exception as adx_error:
                    print(f"⚠️ خطأ في حساب ADX: {adx_error}")
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الاتجاه: {e}")
        
        return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)}
    
    def _calculate_momentum_indicators(self, dataframe):
        """حساب مؤشرات الزخم"""
        momentum = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # RSI
            if len(dataframe) >= 14:
                rsi = ta.rsi(dataframe['close'], length=14)
                if rsi is not None and not rsi.empty and not pd.isna(rsi.iloc[-1]): 
                    momentum['rsi'] = float(rsi.iloc[-1])
            
            # MACD
            if len(dataframe) >= 26:
                macd = ta.macd(dataframe['close'])
                if macd is not None and not macd.empty:
                    macd_hist = macd.get('MACDh_12_26_9')
                    macd_line = macd.get('MACD_12_26_9')
                    
                    if macd_hist is not None and not macd_hist.empty and not pd.isna(macd_hist.iloc[-1]): 
                        momentum['macd_hist'] = float(macd_hist.iloc[-1])
                    if macd_line is not None and not macd_line.empty and not pd.isna(macd_line.iloc[-1]): 
                        momentum['macd_line'] = float(macd_line.iloc[-1])
            
            # ستوكاستك RSI
            if len(dataframe) >= 14:
                stoch_rsi = ta.stochrsi(dataframe['close'], length=14)
                if stoch_rsi is not None and not stoch_rsi.empty:
                    stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3')
                    if stoch_k is not None and not stoch_k.empty and not pd.isna(stoch_k.iloc[-1]): 
                        momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1])
            
            # ويليامز %R
            if len(dataframe) >= 14:
                williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                if williams is not None and not williams.empty and not pd.isna(williams.iloc[-1]): 
                    momentum['williams_r'] = float(williams.iloc[-1])
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الزخم: {e}")
        
        return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)}
    
    def _calculate_volatility_indicators(self, dataframe):
        """حساب مؤشرات التقلب"""
        volatility = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # بولينجر باندز
            if len(dataframe) >= 20:
                bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
                if bollinger_bands is not None and not bollinger_bands.empty:
                    bb_lower = bollinger_bands.get('BBL_20_2.0')
                    bb_upper = bollinger_bands.get('BBU_20_2.0') 
                    bb_middle = bollinger_bands.get('BBM_20_2.0')
                    
                    if bb_lower is not None and not bb_lower.empty and not pd.isna(bb_lower.iloc[-1]): 
                        volatility['bb_lower'] = float(bb_lower.iloc[-1])
                    if bb_upper is not None and not bb_upper.empty and not pd.isna(bb_upper.iloc[-1]): 
                        volatility['bb_upper'] = float(bb_upper.iloc[-1])
                    if bb_middle is not None and not bb_middle.empty and not pd.isna(bb_middle.iloc[-1]): 
                        volatility['bb_middle'] = float(bb_middle.iloc[-1])
            
            # متوسط المدى الحقيقي (ATR)
            if len(dataframe) >= 14:
                average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                if average_true_range is not None and not average_true_range.empty and not pd.isna(average_true_range.iloc[-1]): 
                    atr_value = float(average_true_range.iloc[-1])
                    volatility['atr'] = atr_value
                    current_close = dataframe['close'].iloc[-1] if not dataframe['close'].empty else 0
                    if atr_value and current_close > 0: 
                        volatility['atr_percent'] = (atr_value / current_close) * 100
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات التقلب: {e}")
        
        return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)}
    
    def _calculate_volume_indicators(self, dataframe, timeframe):
        """حساب مؤشرات الحجم"""
        volume = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns or 'volume' not in dataframe.columns:
                return {}
            
            # VWAP - إصلاح المشكلة هنا
            if len(dataframe) >= 1:
                try:
                    # إنشاء نسخة من البيانات مع DatetimeIndex مرتب
                    df_vwap = dataframe.copy()
                    
                    # تحويل timestamp إلى datetime وضبطه كـ index
                    if not isinstance(df_vwap.index, pd.DatetimeIndex):
                        if 'timestamp' in df_vwap.columns:
                            df_vwap['timestamp'] = pd.to_datetime(df_vwap['timestamp'], unit='ms')
                            df_vwap.set_index('timestamp', inplace=True)
                    
                    # التأكد من أن الفهرس مرتب
                    df_vwap.sort_index(inplace=True)
                    
                    # حساب VWAP
                    volume_weighted_average_price = ta.vwap(
                        high=df_vwap['high'],
                        low=df_vwap['low'], 
                        close=df_vwap['close'],
                        volume=df_vwap['volume']
                    )
                    
                    if volume_weighted_average_price is not None and not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]): 
                        volume['vwap'] = float(volume_weighted_average_price.iloc[-1])
                        
                except Exception as vwap_error:
                    print(f"⚠️ خطأ في حساب VWAP لـ {timeframe}: {vwap_error}")
                    # استخدام بديل لـ VWAP في حالة الخطأ
                    if len(dataframe) >= 20:
                        try:
                            typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3
                            vwap_simple = (typical_price * dataframe['volume']).sum() / dataframe['volume'].sum()
                            if not np.isnan(vwap_simple):
                                volume['vwap'] = float(vwap_simple)
                        except Exception as simple_vwap_error:
                            print(f"⚠️ خطأ في حساب VWAP البديل: {simple_vwap_error}")
            
            # OBV
            try:
                on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
                if on_balance_volume is not None and not on_balance_volume.empty and not pd.isna(on_balance_volume.iloc[-1]): 
                    volume['obv'] = float(on_balance_volume.iloc[-1])
            except Exception as obv_error:
                print(f"⚠️ خطأ في حساب OBV: {obv_error}")
            
            # MFI
            if len(dataframe) >= 14:
                try:
                    money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
                    if money_flow_index is not None and not money_flow_index.empty and not pd.isna(money_flow_index.iloc[-1]): 
                        volume['mfi'] = float(money_flow_index.iloc[-1])
                except Exception as mfi_error:
                    print(f"⚠️ خطأ في حساب MFI: {mfi_error}")
            
            # نسبة الحجم
            if len(dataframe) >= 20:
                try:
                    volume_avg_20 = float(dataframe['volume'].tail(20).mean())
                    current_volume = float(dataframe['volume'].iloc[-1]) if not dataframe['volume'].empty else 0
                    if volume_avg_20 and volume_avg_20 > 0 and current_volume > 0: 
                        volume_ratio = current_volume / volume_avg_20
                        if not np.isnan(volume_ratio):
                            volume['volume_ratio'] = volume_ratio
                except Exception as volume_error:
                    print(f"⚠️ خطأ في حساب نسبة الحجم: {volume_error}")
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الحجم: {e}")
        
        return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)}
    
    def _calculate_cycle_indicators(self, dataframe):
        """حساب مؤشرات الدورة"""
        cycle = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # هول موفينج افريج
            if len(dataframe) >= 9:
                hull_moving_average = ta.hma(dataframe['close'], length=9)
                if hull_moving_average is not None and not hull_moving_average.empty and not pd.isna(hull_moving_average.iloc[-1]): 
                    cycle['hull_ma'] = float(hull_moving_average.iloc[-1])
            
            # سوبرتريند
            if len(dataframe) >= 10:
                supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
                if supertrend is not None and not supertrend.empty:
                    supertrend_value = supertrend.get('SUPERT_10_3.0')
                    if supertrend_value is not None and not supertrend_value.empty and not pd.isna(supertrend_value.iloc[-1]): 
                        cycle['supertrend'] = float(supertrend_value.iloc[-1])
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الدورة: {e}")
        
        return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}

print("✅ ML Module: Technical Indicators loaded")