File size: 13,975 Bytes
3bcda1c
 
713e0f7
 
 
de73d0d
 
22184d7
713e0f7
 
 
 
 
3bcda1c
de73d0d
22184d7
 
 
 
 
 
 
 
 
 
 
de73d0d
 
 
 
 
 
 
22184d7
 
 
 
 
3bcda1c
 
 
 
ac3f01d
3bcda1c
713e0f7
3bcda1c
 
ac3f01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bcda1c
 
ac3f01d
 
 
 
 
22184d7
3bcda1c
 
ac3f01d
 
 
3bcda1c
 
 
22184d7
 
 
 
 
ac3f01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713e0f7
ac3f01d
 
 
713e0f7
 
ac3f01d
 
 
3bcda1c
ac3f01d
 
 
713e0f7
ac3f01d
 
 
 
 
 
713e0f7
ac3f01d
 
713e0f7
de73d0d
3bcda1c
22184d7
de73d0d
22184d7
3bcda1c
 
22184d7
 
 
ac3f01d
 
713e0f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de73d0d
 
 
713e0f7
 
de73d0d
 
713e0f7
22184d7
713e0f7
22184d7
713e0f7
 
 
 
 
 
 
 
 
de73d0d
713e0f7
 
 
22184d7
713e0f7
 
 
 
 
 
 
 
 
 
 
 
22184d7
713e0f7
de73d0d
713e0f7
 
de73d0d
22184d7
 
713e0f7
 
 
 
 
 
 
22184d7
713e0f7
 
de73d0d
713e0f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de73d0d
713e0f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22184d7
713e0f7
 
22184d7
 
713e0f7
 
 
 
 
 
 
 
 
 
 
de73d0d
713e0f7
22184d7
 
 
713e0f7
 
 
 
22184d7
de73d0d
713e0f7
 
3bcda1c
713e0f7
3bcda1c
ac3f01d
3bcda1c
ac3f01d
 
 
 
 
 
3bcda1c
de73d0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# ml_engine/monte_carlo.py
import numpy as np
import pandas as pd
from arch import arch_model
import lightgbm as lgb
import traceback 
import json 

try:
    import pandas_ta as ta
except ImportError:
    print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
    ta = None

# 🔴 --- START OF CHANGE (FIX NumPy 2.0 Crash) --- 🔴
def _sanitize_results_for_json(results_dict):
    """
    Recursively converts numpy types (ndarray, np.float64, etc.)
    in a dictionary to standard Python types (list, float)
    to make it JSON serializable.
    """
    if isinstance(results_dict, dict):
        return {k: _sanitize_results_for_json(v) for k, v in results_dict.items()}
    elif isinstance(results_dict, list):
        return [_sanitize_results_for_json(v) for v in results_dict]
    elif isinstance(results_dict, np.ndarray):
        return results_dict.tolist()
    # (Removed np.float_ which is deprecated in NumPy 2.0)
    elif isinstance(results_dict, (np.float64, np.float32)):
        return float(results_dict)
    # (Removed np.int_ which is deprecated in NumPy 2.0)
    elif isinstance(results_dict, (np.int64, np.int32)):
        return int(results_dict)
    else:
        return results_dict
# 🔴 --- END OF CHANGE --- 🔴


class MonteCarloAnalyzer:
    def __init__(self):
        self.simulation_results = {}
    
    async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
        """
        (المرحلة 1 - سريعة)
        """
        try:
            if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
                if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 50:
                    closes = np.array([candle[4] for candle in ohlcv_data['15m']])
                else:
                    self.simulation_results = {'error': 'Insufficient OHLCV data (< 30 candles 1h)'}
                    return None
            else:
                all_closes = [candle[4] for candle in ohlcv_data['1h']]
                if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 16:
                    all_closes.extend([candle[4] for candle in ohlcv_data['15m'][-16:]])
                closes = np.array(all_closes)

            if len(closes) < 30:
                self.simulation_results = {'error': 'Insufficient combined OHLCV data (< 30 candles)'}
                return None
            
            current_price = closes[-1]
            if current_price <= 0:
                self.simulation_results = {'error': 'Invalid current price <= 0'}
                return None

            log_returns = np.log(closes[1:] / closes[:-1])
            log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
            
            if len(log_returns) < 20:
                self.simulation_results = {'error': 'Insufficient log returns (< 20)'}
                return None

            mean_return = np.mean(log_returns)
            std_return = np.std(log_returns)
            
            num_simulations = 5000
            t_df = 10
            jump_lambda = 0.05
            jump_mean = 0.0
            jump_std = std_return * 3.0

            drift = (mean_return - 0.5 * std_return**2)
            diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
            jump_mask = np.random.rand(num_simulations) < jump_lambda
            jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
            jump_component = np.zeros(num_simulations)
            jump_component[jump_mask] = jump_sizes[jump_mask]
            simulated_log_returns = drift + diffusion + jump_component
            simulated_prices = current_price * np.exp(simulated_log_returns)

            mean_price = np.mean(simulated_prices)
            median_price = np.median(simulated_prices)
            percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
            pi_95 = [percentiles[0], percentiles[-1]]
            pi_90 = [percentiles[1], percentiles[-2]]
            pi_50 = [percentiles[2], percentiles[4]]
            VaR_95_price = percentiles[1]
            VaR_95_value = current_price - VaR_95_price
            losses_beyond_var = simulated_prices[simulated_prices <= VaR_95_price]
            CVR_95_price = np.mean(losses_beyond_var) if len(losses_beyond_var) > 0 else VaR_95_price
            CVaR_95_value = current_price - CVR_95_price
            target_price = current_price * (1 + target_profit_percent)
            probability_of_gain = np.mean(simulated_prices >= target_price)
            
            self.simulation_results = {
                'simulation_model': 'Phase1_Student-t_JumpDiffusion',
                'num_simulations': num_simulations,
                'current_price': current_price,
                'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
                'prediction_interval_50': pi_50,
                'prediction_interval_90': pi_90,
                'prediction_interval_95': pi_95,
                'risk_metrics': {
                    'VaR_95_price': VaR_95_price,
                    'VaR_95_value': VaR_95_value,
                    'CVaR_95_price': CVR_95_price,
                    'CVaR_95_value': CVaR_95_value,
                },
                'probability_of_gain': probability_of_gain,
                'raw_simulated_prices': simulated_prices[:100]
            }
            
            # (Sanitize Phase 1 results as well)
            return _sanitize_results_for_json(self.simulation_results)
            
        except Exception as e:
            print(f"❌ خطأ فادح في محاكاة مونت كارلو (Phase 1): {e}")
            traceback.print_exc()
            self.simulation_results = {'error': f'Phase 1 MC Error: {str(e)}'}
            return None

    async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
        """
        (المرحلة 2+3 - متقدمة)
        """
        try:
            if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
                self.simulation_results = {'error': 'Advanced MC requires 1h data (>= 50 candles)'}
                return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)

            candles = ohlcv_data['1h']
            df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
            df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
            df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
            df.set_index('timestamp', inplace=True)
            df.sort_index(inplace=True)

            if df.empty or len(df) < 50:
                raise ValueError("DataFrame creation failed or insufficient data after processing")
            
            current_price = df['close'].iloc[-1]
            df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
            log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)

            # 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
            try:
                # 🔴 --- START OF CHANGE (FIX GARCH Warning) --- 🔴
                # (Rescale by 100, and set rescale=False to stop GARCH from auto-scaling)
                garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
                res = garch_model.fit(update_freq=0, disp='off') 
                forecast = res.forecast(horizon=1)
                # (Divide by 100^2 = 10000)
                forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
                forecasted_std_return = np.sqrt(forecasted_var)
                # 🔴 --- END OF CHANGE --- 🔴
            except Exception as garch_err:
                forecasted_std_return = np.std(log_returns_series.iloc[-30:])
                print(f"⚠️ GARCH failed, using std: {garch_err}")


            # 4. (Phase 3) توقع الميل (Drift) باستخدام LightGBM
            try:
                if ta:
                    df['rsi'] = ta.rsi(df['close'], length=14)
                    macd = ta.macd(df['close'], fast=12, slow=26, signal=9)
                    df['macd_hist'] = macd['MACDh_12_26_9']
                else: 
                    delta = df['close'].diff()
                    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
                    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
                    rs = gain / (loss + 1e-9) # (Added 1e-9 to prevent zero division)
                    df['rsi'] = 100 - (100 / (1 + rs))
                    df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()

                df['lag_1'] = df['log_returns'].shift(1)
                df['lag_2'] = df['log_returns'].shift(2)
                
                features = ['rsi', 'macd_hist', 'lag_1', 'lag_2']
                df.dropna(inplace=True)

                if df.empty or len(df) < 20:
                     raise ValueError("Insufficient data after feature engineering")

                df['target'] = df['log_returns'].shift(-1)
                df.dropna(inplace=True)

                X = df[features]
                y = df['target']
                
                X_train, y_train = X.iloc[:-1], y.iloc[:-1]
                X_predict = X.iloc[-1:]

                lgbm_model = lgb.LGBMRegressor(n_estimators=100, learning_rate=0.1, n_jobs=1, verbose=-1)
                lgbm_model.fit(X_train, y_train)
                
                forecasted_mean_return = lgbm_model.predict(X_predict)[0]
            
            except Exception as lgbm_err:
                forecasted_mean_return = np.mean(log_returns_series.iloc[-30:])
                print(f"⚠️ LGBM failed, using mean: {lgbm_err}")

            # 5. تشغيل المحاكاة بالقيم الديناميكية
            num_simulations = 5000
            t_df = 10
            jump_lambda = 0.05
            jump_mean = 0.0
            jump_std = forecasted_std_return * 3.0 
            
            mean_return = forecasted_mean_return
            std_return = forecasted_std_return

            drift = (mean_return - 0.5 * std_return**2)
            diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
            jump_mask = np.random.rand(num_simulations) < jump_lambda
            jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
            jump_component = np.zeros(num_simulations)
            jump_component[jump_mask] = jump_sizes[jump_mask]
            
            simulated_log_returns = drift + diffusion + jump_component
            simulated_prices = current_price * np.exp(simulated_log_returns)

            # 6. حساب المخرجات والتوزيع
            mean_price = np.mean(simulated_prices)
            median_price = np.median(simulated_prices)
            percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
            pi_95 = [percentiles[0], percentiles[-1]]
            pi_90 = [percentiles[1], percentiles[-2]]
            pi_50 = [percentiles[2], percentiles[4]]
            VaR_95_price = percentiles[1]
            VaR_95_value = current_price - VaR_95_price
            losses_beyond_var = simulated_prices[simulated_prices <= VaR_95_price]
            CVR_95_price = np.mean(losses_beyond_var) if len(losses_beyond_var) > 0 else VaR_95_price
            CVaR_95_value = current_price - CVR_95_price
            target_price = current_price * (1 + target_profit_percent)
            probability_of_gain = np.mean(simulated_prices >= target_price)
            
            self.simulation_results = {
                'simulation_model': 'Phase2_GARCH_LGBM',
                'num_simulations': num_simulations,
                'current_price': current_price,
                'forecasted_drift_lgbm': forecasted_mean_return,
                'forecasted_vol_garch': forecasted_std_return,
                'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
                'prediction_interval_50': pi_50,
                'prediction_interval_90': pi_90,
                'prediction_interval_95': pi_95,
                'risk_metrics': {
                    'VaR_95_price': VaR_95_price,
                    'VaR_95_value': VaR_95_value,
                    'CVaR_95_price': CVR_95_price,
                    'CVaR_95_value': CVaR_95_value,
                },
                'probability_of_gain': probability_of_gain,
                'raw_simulated_prices': simulated_prices[:100]
            }
            
            # (Sanitize the results before returning)
            return _sanitize_results_for_json(self.simulation_results)
            
        except Exception as e:
            print(f"❌ خطأ فادح في محاكاة مونت كارلو المتقدمة (GARCH/LGBM): {e}")
            traceback.print_exc()
            self.simulation_results = {'error': f'Advanced MC Error: {str(e)}'}
            # العودة إلى المرحلة 1 في حالة الفشل الفادح
            return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)

    def _calculate_trend_adjustment(self, closes):
        """(غير مستخدمة حالياً)"""
        try:
            if len(closes) < 10: return 1.0
            recent_trend = (closes[-1] - closes[-10]) / closes[-10]
            if recent_trend > 0.02: return 1.2
            elif recent_trend > 0.01: return 1.1
            elif recent_trend < -0.02: return 0.8
            elif recent_trend < -0.01: return 0.9
            else: return 1.0
        except Exception: return 1.0

print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (FIXED: NumPy 2.0 & GARCH Scale v2)")