Spaces:
Running
Running
File size: 57,745 Bytes
571ec51 53cf6c0 925bbcf 53cf6c0 2850975 53cf6c0 925bbcf 53cf6c0 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 2850975 925bbcf 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 2850975 925bbcf 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 2850975 925bbcf 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 2850975 925bbcf 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 2850975 925bbcf 2850975 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf ee8c551 53cf6c0 ee8c551 571ec51 53cf6c0 ee8c551 53cf6c0 ee8c551 53cf6c0 925bbcf 571ec51 53cf6c0 ee8c551 571ec51 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 ee8c551 571ec51 ee8c551 571ec51 ee8c551 571ec51 ee8c551 571ec51 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf ee8c551 1b0c9db 53cf6c0 ee8c551 53cf6c0 1b0c9db ee8c551 925bbcf 53cf6c0 1b0c9db 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf 53cf6c0 ee8c551 925bbcf 53cf6c0 ee8c551 1b0c9db ee8c551 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 925bbcf ee8c551 925bbcf 53cf6c0 925bbcf ee8c551 925bbcf 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf 53cf6c0 925bbcf ee8c551 925bbcf 53cf6c0 925bbcf ee8c551 925bbcf ee8c551 53cf6c0 1b0c9db 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 925bbcf ee8c551 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 1b0c9db 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf ee8c551 925bbcf ee8c551 925bbcf 53cf6c0 ee8c551 53cf6c0 1b0c9db 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 bb03264 925bbcf 53cf6c0 1b0c9db 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf 53cf6c0 925bbcf 53cf6c0 ee8c551 925bbcf ee8c551 925bbcf ee8c551 925bbcf 53cf6c0 ee8c551 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 ee8c551 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 53cf6c0 925bbcf 21a39fc 925bbcf 21a39fc 925bbcf 21a39fc 925bbcf 21a39fc 925bbcf 571ec51 925bbcf 571ec51 925bbcf 571ec51 925bbcf 53cf6c0 925bbcf 571ec51 925bbcf 571ec51 925bbcf 571ec51 925bbcf 571ec51 925bbcf 571ec51 2850975 571ec51 925bbcf 2850975 571ec51 925bbcf ee8c551 925bbcf ee8c551 925bbcf ee8c551 925bbcf ee8c551 925bbcf ee8c551 925bbcf 571ec51 2850975 925bbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
# ML.py
import pandas as pd
import pandas_ta as ta
import numpy as np
from datetime import datetime, timedelta
import asyncio
import json
import re
class AdvancedTechnicalAnalyzer:
def __init__(self):
self.indicators_config = {
'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
}
def calculate_all_indicators(self, dataframe, timeframe):
"""حساب جميع المؤشرات الفنية للإطار الزمني المحدد"""
if dataframe.empty:
return {}
indicators = {}
try:
indicators.update(self._calculate_trend_indicators(dataframe))
indicators.update(self._calculate_momentum_indicators(dataframe))
indicators.update(self._calculate_volatility_indicators(dataframe))
indicators.update(self._calculate_volume_indicators(dataframe))
indicators.update(self._calculate_cycle_indicators(dataframe))
except Exception as e:
print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}")
return indicators
def _calculate_trend_indicators(self, dataframe):
"""حساب مؤشرات الاتجاه"""
trend = {}
try:
# المتوسطات المتحركة
if len(dataframe) >= 9:
ema_9 = ta.ema(dataframe['close'], length=9)
if ema_9 is not None and not ema_9.empty:
trend['ema_9'] = float(ema_9.iloc[-1])
if len(dataframe) >= 21:
ema_21 = ta.ema(dataframe['close'], length=21)
if ema_21 is not None and not ema_21.empty:
trend['ema_21'] = float(ema_21.iloc[-1])
if len(dataframe) >= 50:
ema_50 = ta.ema(dataframe['close'], length=50)
if ema_50 is not None and not ema_50.empty:
trend['ema_50'] = float(ema_50.iloc[-1])
if len(dataframe) >= 200:
ema_200 = ta.ema(dataframe['close'], length=200)
if ema_200 is not None and not ema_200.empty:
trend['ema_200'] = float(ema_200.iloc[-1])
# إيشيموكو
if len(dataframe) >= 26:
ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
if ichimoku is not None and len(ichimoku) > 0:
conversion_line = ichimoku[0].get('ITS_9')
base_line = ichimoku[0].get('IKS_26')
if conversion_line is not None and not conversion_line.empty:
trend['ichimoku_conversion'] = float(conversion_line.iloc[-1])
if base_line is not None and not base_line.empty:
trend['ichimoku_base'] = float(base_line.iloc[-1])
# ADX - قوة الاتجاه
if len(dataframe) >= 14:
adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
if adx_result is not None and not adx_result.empty:
adx_value = adx_result.get('ADX_14')
if adx_value is not None and not adx_value.empty:
trend['adx'] = float(adx_value.iloc[-1])
except Exception as e:
print(f"⚠️ خطأ في حساب مؤشرات الاتجاه: {e}")
return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)}
def _calculate_momentum_indicators(self, dataframe):
"""حساب مؤشرات الزخم"""
momentum = {}
try:
# RSI
if len(dataframe) >= 14:
rsi = ta.rsi(dataframe['close'], length=14)
if rsi is not None and not rsi.empty:
momentum['rsi'] = float(rsi.iloc[-1])
# MACD
if len(dataframe) >= 26:
macd = ta.macd(dataframe['close'])
if macd is not None and not macd.empty:
macd_hist = macd.get('MACDh_12_26_9')
macd_line = macd.get('MACD_12_26_9')
if macd_hist is not None and not macd_hist.empty:
momentum['macd_hist'] = float(macd_hist.iloc[-1])
if macd_line is not None and not macd_line.empty:
momentum['macd_line'] = float(macd_line.iloc[-1])
# ستوكاستك RSI
if len(dataframe) >= 14:
stoch_rsi = ta.stochrsi(dataframe['close'], length=14)
if stoch_rsi is not None and not stoch_rsi.empty:
stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3')
if stoch_k is not None and not stoch_k.empty:
momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1])
# ويليامز %R
if len(dataframe) >= 14:
williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
if williams is not None and not williams.empty:
momentum['williams_r'] = float(williams.iloc[-1])
except Exception as e:
print(f"⚠️ خطأ في حساب مؤشرات الزخم: {e}")
return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)}
def _calculate_volatility_indicators(self, dataframe):
"""حساب مؤشرات التقلب"""
volatility = {}
try:
# بولينجر باندز - إصلاح الخطأ هنا
if len(dataframe) >= 20:
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
if bollinger_bands is not None and not bollinger_bands.empty:
# استخدام أسماء الأعمدة الصحيحة
bb_lower = bollinger_bands.get('BBL_20_2.0')
bb_upper = bollinger_bands.get('BBU_20_2.0')
bb_middle = bollinger_bands.get('BBM_20_2.0')
# التحقق من وجود الأعمدة قبل الوصول إليها
if bb_lower is not None and not bb_lower.empty:
volatility['bb_lower'] = float(bb_lower.iloc[-1])
if bb_upper is not None and not bb_upper.empty:
volatility['bb_upper'] = float(bb_upper.iloc[-1])
if bb_middle is not None and not bb_middle.empty:
volatility['bb_middle'] = float(bb_middle.iloc[-1])
# متوسط المدى الحقيقي (ATR)
if len(dataframe) >= 14:
average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
if average_true_range is not None and not average_true_range.empty:
atr_value = float(average_true_range.iloc[-1])
volatility['atr'] = atr_value
if atr_value and dataframe['close'].iloc[-1] > 0:
volatility['atr_percent'] = (atr_value / dataframe['close'].iloc[-1]) * 100
except Exception as e:
print(f"⚠️ خطأ في حساب مؤشرات التقلب: {e}")
return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)}
def _calculate_volume_indicators(self, dataframe):
"""حساب مؤشرات الحجم"""
volume = {}
try:
# VWAP
if len(dataframe) >= 1:
volume_weighted_average_price = ta.vwap(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'])
if volume_weighted_average_price is not None and not volume_weighted_average_price.empty:
volume['vwap'] = float(volume_weighted_average_price.iloc[-1])
# OBV
on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
if on_balance_volume is not None and not on_balance_volume.empty:
volume['obv'] = float(on_balance_volume.iloc[-1])
# MFI
if len(dataframe) >= 14:
money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
if money_flow_index is not None and not money_flow_index.empty:
volume['mfi'] = float(money_flow_index.iloc[-1])
# نسبة الحجم
if len(dataframe) >= 20:
volume_avg_20 = float(dataframe['volume'].tail(20).mean())
if volume_avg_20 and volume_avg_20 > 0:
volume['volume_ratio'] = float(dataframe['volume'].iloc[-1] / volume_avg_20)
except Exception as e:
print(f"⚠️ خطأ في حساب مؤشرات الحجم: {e}")
return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)}
def _calculate_cycle_indicators(self, dataframe):
"""حساب مؤشرات الدورة"""
cycle = {}
try:
# هول موفينج افريج
if len(dataframe) >= 9:
hull_moving_average = ta.hma(dataframe['close'], length=9)
if hull_moving_average is not None and not hull_moving_average.empty:
cycle['hull_ma'] = float(hull_moving_average.iloc[-1])
# سوبرتريند
if len(dataframe) >= 10:
supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
if supertrend is not None and not supertrend.empty:
supertrend_value = supertrend.get('SUPERT_10_3.0')
if supertrend_value is not None and not supertrend_value.empty:
cycle['supertrend'] = float(supertrend_value.iloc[-1])
except Exception as e:
print(f"⚠️ خطأ في حساب مؤشرات الدورة: {e}")
return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}
class MonteCarloAnalyzer:
def __init__(self):
self.simulation_results = {}
async def predict_1h_probability(self, ohlcv_data):
"""
محاكاة مونت كارلو للتنبؤ بالساعة القادمة
تركز على احتمالية تحقيق ربح 0.5% في الساعة القادمة
"""
try:
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 24:
return 0.5
# استخدام بيانات 1h و 15m معاً لدقة أفضل
all_closes = []
# إضافة بيانات 1h
all_closes.extend([candle[4] for candle in ohlcv_data['1h']])
# إضافة بيانات 15m إن وجدت
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 16:
recent_15m = [candle[4] for candle in ohlcv_data['15m'][-16:]]
all_closes.extend(recent_15m)
if len(all_closes) < 30:
return 0.5
closes = np.array(all_closes)
current_price = closes[-1]
# حساب العوائد اللوغاريتمية بدقة
log_returns = []
for i in range(1, len(closes)):
if closes[i-1] > 0:
log_return = np.log(closes[i] / closes[i-1])
log_returns.append(log_return)
if len(log_returns) < 20:
return 0.5
log_returns = np.array(log_returns)
mean_return = np.mean(log_returns)
std_return = np.std(log_returns)
# محاكاة مونت كارلو للساعة القادمة
num_simulations = 2000 # زيادة عدد المحاكاة للدقة
target_periods = 1 # الساعة القادمة
profit_threshold = 0.005 # هدف ربح 0.5%
success_count = 0
simulation_details = []
for i in range(num_simulations):
simulated_price = current_price
# محاكاة حركة السعر للساعة القادمة
for period in range(target_periods):
# حركة عشوائية بناءً على التوزيع الطبيعي للعوائد
random_return = np.random.normal(mean_return, std_return)
simulated_price *= np.exp(random_return)
# نجاح إذا حقق ربح 0.5% أو أكثر
price_change = (simulated_price - current_price) / current_price
if price_change >= profit_threshold:
success_count += 1
# تخزين تفاصيل المحاكاة للتحليل
if i < 100: # نخزن أول 100 محاكاة فقط
simulation_details.append({
'simulation': i,
'final_price': simulated_price,
'profit_percent': price_change * 100
})
probability = success_count / num_simulations
# تحسين الاحتمالية بناءً على الاتجاه الحالي
trend_adjustment = self._calculate_trend_adjustment(closes)
adjusted_probability = probability * trend_adjustment
# تخزين النتائج للتحليل
self.simulation_results = {
'base_probability': probability,
'adjusted_probability': adjusted_probability,
'success_count': success_count,
'total_simulations': num_simulations,
'mean_return': mean_return,
'std_return': std_return,
'trend_adjustment': trend_adjustment,
'simulation_details': simulation_details[:10] # أول 10 فقط للعرض
}
return min(max(adjusted_probability, 0.01), 0.99) # حدود معقولة
except Exception as e:
print(f"❌ خطأ في محاكاة مونت كارلو: {e}")
return 0.5
def _calculate_trend_adjustment(self, closes):
"""حساب معامل تعديل الاتجاه"""
try:
if len(closes) < 10:
return 1.0
# حساب الاتجاه القصير (آخر 10 فترات)
recent_trend = (closes[-1] - closes[-10]) / closes[-10]
# حساب قوة الاتجاه باستخدام RSI مبسط
gains = []
losses = []
for i in range(1, min(14, len(closes))):
change = closes[-(i+1)] - closes[-i]
if change > 0:
gains.append(change)
else:
losses.append(abs(change))
avg_gain = np.mean(gains) if gains else 0
avg_loss = np.mean(losses) if losses else 1
rs = avg_gain / avg_loss
trend_strength = 100 - (100 / (1 + rs))
# تعديل الاحتمالية بناءً على الاتجاه وقوته
if recent_trend > 0.02 and trend_strength > 60: # اتجاه صعودي قوي
return 1.3
elif recent_trend > 0.01 and trend_strength > 50: # اتجاه صعودي متوسط
return 1.15
elif recent_trend < -0.02 and trend_strength < 40: # اتجاه هبوطي قوي
return 0.7
elif recent_trend < -0.01 and trend_strength < 50: # اتجاه هبوطي متوسط
return 0.85
else: # اتجاه جانبي
return 1.0
except Exception as e:
print(f"❌ خطأ في حساب تعديل الاتجاه: {e}")
return 1.0
class PatternEnhancedStrategyEngine:
def __init__(self, data_manager, learning_engine):
self.data_manager = data_manager
self.learning_engine = learning_engine
self.pattern_analyzer = ChartPatternAnalyzer()
async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
"""تعزيز الاستراتيجيات بناءً على الأنماط المكتشفة"""
if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']:
return strategy_scores
pattern_confidence = pattern_analysis.get('pattern_confidence', 0)
pattern_name = pattern_analysis.get('pattern_detected', '')
predicted_direction = pattern_analysis.get('predicted_direction', '')
if pattern_confidence >= 0.6:
enhancement_factor = self._calculate_pattern_enhancement(pattern_confidence, pattern_name)
enhanced_strategies = self._get_pattern_appropriate_strategies(pattern_name, predicted_direction)
print(f"🎯 تعزيز استراتيجيات {symbol} بناءً على نمط {pattern_name} (ثقة: {pattern_confidence:.2f})")
for strategy in enhanced_strategies:
if strategy in strategy_scores:
original_score = strategy_scores[strategy]
strategy_scores[strategy] = min(original_score * enhancement_factor, 1.0)
print(f" 📈 {strategy}: {original_score:.3f} → {strategy_scores[strategy]:.3f}")
return strategy_scores
def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
"""حساب عامل التعزيز بناءً على ثقة النمط ونوعه"""
base_enhancement = 1.0 + (pattern_confidence * 0.3)
high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
if pattern_name in high_reliability_patterns:
base_enhancement *= 1.1
return min(base_enhancement, 1.5)
def _get_pattern_appropriate_strategies(self, pattern_name, direction):
"""تحديد الاستراتيجيات المناسبة للنمط المكتشف"""
reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
if pattern_name in reversal_patterns:
if direction == 'down':
return ['breakout_momentum', 'trend_following']
else:
return ['mean_reversion', 'breakout_momentum']
elif pattern_name in continuation_patterns:
return ['trend_following', 'breakout_momentum']
else:
return ['breakout_momentum', 'hybrid_ai']
class ChartPatternAnalyzer:
def __init__(self):
self.pattern_cache = {}
async def detect_chart_patterns(self, ohlcv_data):
"""اكتشاف الأنماط البيانية لجميع الأطر الزمنية"""
patterns = {
'pattern_detected': 'no_clear_pattern',
'pattern_confidence': 0,
'predicted_direction': 'neutral',
'timeframe_analysis': {},
'all_patterns': []
}
try:
# تحليل كل إطار زمني
for timeframe, candles in ohlcv_data.items():
if candles and len(candles) >= 20:
dataframe = self._create_dataframe(candles)
timeframe_pattern = await self._analyze_timeframe_patterns(dataframe, timeframe)
patterns['timeframe_analysis'][timeframe] = timeframe_pattern
patterns['all_patterns'].append(timeframe_pattern)
# اختيار النمط الأعلى ثقة
if timeframe_pattern['confidence'] > patterns['pattern_confidence']:
patterns.update({
'pattern_detected': timeframe_pattern['pattern'],
'pattern_confidence': timeframe_pattern['confidence'],
'predicted_direction': timeframe_pattern['direction']
})
return patterns
except Exception as e:
print(f"❌ خطأ في اكتشاف الأنماط: {e}")
return patterns
def _create_dataframe(self, candles):
"""إنشاء DataFrame من بيانات الشموع"""
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
return df
async def _analyze_timeframe_patterns(self, dataframe, timeframe):
"""تحليل الأنماط لإطار زمني محدد"""
pattern_info = {
'pattern': 'no_clear_pattern',
'confidence': 0,
'direction': 'neutral',
'timeframe': timeframe,
'details': {}
}
try:
if len(dataframe) < 20:
return pattern_info
closes = dataframe['close'].values
highs = dataframe['high'].values
lows = dataframe['low'].values
current_price = closes[-1]
# اكتشاف الأنماط المختلفة
patterns_detected = []
# 1. القمة المزدوجة / القاع المزدوج
double_pattern = self._detect_double_pattern(highs, lows, closes)
if double_pattern['detected']:
patterns_detected.append(double_pattern)
# 2. الاختراق
breakout_pattern = self._detect_breakout_pattern(highs, lows, closes)
if breakout_pattern['detected']:
patterns_detected.append(breakout_pattern)
# 3. الاتجاه
trend_pattern = self._detect_trend_pattern(dataframe)
if trend_pattern['detected']:
patterns_detected.append(trend_pattern)
# 4. الدعم والمقاومة
support_resistance_pattern = self._detect_support_resistance(highs, lows, closes)
if support_resistance_pattern['detected']:
patterns_detected.append(support_resistance_pattern)
# اختيار النمط الأقوى
if patterns_detected:
best_pattern = max(patterns_detected, key=lambda x: x['confidence'])
pattern_info.update({
'pattern': best_pattern['pattern'],
'confidence': best_pattern['confidence'],
'direction': best_pattern.get('direction', 'neutral'),
'details': best_pattern.get('details', {})
})
return pattern_info
except Exception as e:
print(f"❌ خطأ في تحليل الأنماط للإطار {timeframe}: {e}")
return pattern_info
def _detect_double_pattern(self, highs, lows, closes):
"""كشف نمط القمة المزدوجة أو القاع المزدوج"""
try:
if len(highs) < 15:
return {'detected': False}
# البحث عن قمتين متقاربتين
recent_highs = highs[-15:]
recent_lows = lows[-15:]
# العثور على أعلى قمتين
high_indices = np.argsort(recent_highs)[-2:]
high_indices.sort()
# العثور على أقل قاعين
low_indices = np.argsort(recent_lows)[:2]
low_indices.sort()
double_top = False
double_bottom = False
# التحقق من القمة المزدوجة
if len(high_indices) == 2:
high1 = recent_highs[high_indices[0]]
high2 = recent_highs[high_indices[1]]
time_diff = high_indices[1] - high_indices[0]
if (abs(high1 - high2) / high1 < 0.02 and # القمتان متقاربتان
time_diff >= 3 and time_diff <= 10 and # الفاصل الزمني معقول
closes[-1] < min(high1, high2)): # السعر تحت القمتين
double_top = True
# التحقق من القاع المزدوج
if len(low_indices) == 2:
low1 = recent_lows[low_indices[0]]
low2 = recent_lows[low_indices[1]]
time_diff = low_indices[1] - low_indices[0]
if (abs(low1 - low2) / low1 < 0.02 and # القاعان متقاربان
time_diff >= 3 and time_diff <= 10 and # الفاصل الزمني معقول
closes[-1] > max(low1, low2)): # السعر فوق القاعين
double_bottom = True
if double_top:
return {
'detected': True,
'pattern': 'Double Top',
'confidence': 0.75,
'direction': 'down',
'details': {
'resistance_level': np.mean([high1, high2]),
'breakdown_level': min(lows[-5:])
}
}
elif double_bottom:
return {
'detected': True,
'pattern': 'Double Bottom',
'confidence': 0.75,
'direction': 'up',
'details': {
'support_level': np.mean([low1, low2]),
'breakout_level': max(highs[-5:])
}
}
return {'detected': False}
except Exception as e:
return {'detected': False}
def _detect_breakout_pattern(self, highs, lows, closes):
"""كشف نمط الاختراق"""
try:
if len(highs) < 25:
return {'detected': False}
current_price = closes[-1]
# حساب مستويات الدعم والمقاومة
resistance = np.max(highs[-25:-5]) # مقاومة من الفترة السابقة
support = np.min(lows[-25:-5]) # دعم من الفترة السابقة
# اختراق المقاومة
if current_price > resistance * 1.01:
return {
'detected': True,
'pattern': 'Breakout Up',
'confidence': 0.8,
'direction': 'up',
'details': {
'breakout_level': resistance,
'target_level': resistance * 1.05
}
}
# اختراق الدعم
elif current_price < support * 0.99:
return {
'detected': True,
'pattern': 'Breakout Down',
'confidence': 0.8,
'direction': 'down',
'details': {
'breakdown_level': support,
'target_level': support * 0.95
}
}
return {'detected': False}
except Exception as e:
return {'detected': False}
def _detect_trend_pattern(self, dataframe):
"""كشف نمط الاتجاه"""
try:
if len(dataframe) < 20:
return {'detected': False}
closes = dataframe['close'].values
# حساب المتوسطات المتحركة
ma_short = np.mean(closes[-5:])
ma_medium = np.mean(closes[-13:])
ma_long = np.mean(closes[-21:])
# تحديد قوة الاتجاه
if ma_short > ma_medium > ma_long and closes[-1] > ma_short:
trend_strength = (ma_short - ma_long) / ma_long
confidence = min(0.3 + trend_strength * 10, 0.8)
return {
'detected': True,
'pattern': 'Uptrend',
'confidence': confidence,
'direction': 'up',
'details': {
'trend_strength': trend_strength,
'support_level': ma_medium
}
}
elif ma_short < ma_medium < ma_long and closes[-1] < ma_short:
trend_strength = (ma_long - ma_short) / ma_long
confidence = min(0.3 + trend_strength * 10, 0.8)
return {
'detected': True,
'pattern': 'Downtrend',
'confidence': confidence,
'direction': 'down',
'details': {
'trend_strength': trend_strength,
'resistance_level': ma_medium
}
}
return {'detected': False}
except Exception as e:
return {'detected': False}
def _detect_support_resistance(self, highs, lows, closes):
"""كشف مستويات الدعم والمقاومة"""
try:
if len(highs) < 20:
return {'detected': False}
current_price = closes[-1]
# حساب مستويات الدعم والمقاومة من البيانات التاريخية
resistance_level = np.max(highs[-20:])
support_level = np.min(lows[-20:])
# تحديد إذا كان السعر قرب أحد هذه المستويات
position = (current_price - support_level) / (resistance_level - support_level)
if position < 0.2: # قرب الدعم
return {
'detected': True,
'pattern': 'Near Support',
'confidence': 0.6,
'direction': 'up',
'details': {
'support_level': support_level,
'resistance_level': resistance_level,
'position': position
}
}
elif position > 0.8: # قرب المقاومة
return {
'detected': True,
'pattern': 'Near Resistance',
'confidence': 0.6,
'direction': 'down',
'details': {
'support_level': support_level,
'resistance_level': resistance_level,
'position': position
}
}
return {'detected': False}
except Exception as e:
return {'detected': False}
class MultiStrategyEngine:
def __init__(self, data_manager, learning_engine):
self.data_manager = data_manager
self.learning_engine = learning_engine
self.technical_analyzer = AdvancedTechnicalAnalyzer()
self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
self.monte_carlo_analyzer = MonteCarloAnalyzer()
self.pattern_analyzer = ChartPatternAnalyzer()
self.strategies = {
'trend_following': self._trend_following_strategy,
'mean_reversion': self._mean_reversion_strategy,
'breakout_momentum': self._breakout_momentum_strategy,
'volume_spike': self._volume_spike_strategy,
'whale_tracking': self._whale_tracking_strategy,
'pattern_recognition': self._pattern_recognition_strategy,
'hybrid_ai': self._hybrid_ai_strategy
}
async def evaluate_all_strategies(self, symbol_data, market_context):
"""تقييم جميع استراتيجيات التداول"""
try:
# الحصول على الأوزان المثلى من محرك التعلم
if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
try:
market_condition = market_context.get('market_trend', 'sideways_market')
optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
except Exception as e:
optimized_weights = await self.get_default_weights()
else:
optimized_weights = await self.get_default_weights()
strategy_scores = {}
base_scores = {}
# تقييم كل استراتيجية
for strategy_name, strategy_function in self.strategies.items():
try:
base_score = await strategy_function(symbol_data, market_context)
base_scores[strategy_name] = base_score
weight = optimized_weights.get(strategy_name, 0.1)
weighted_score = base_score * weight
strategy_scores[strategy_name] = min(weighted_score, 1.0)
except Exception as error:
print(f"❌ خطأ في تقييم استراتيجية {strategy_name}: {error}")
base_score = await self._fallback_strategy_score(strategy_name, symbol_data, market_context)
base_scores[strategy_name] = base_score
strategy_scores[strategy_name] = base_score * optimized_weights.get(strategy_name, 0.1)
# تطبيق تعزيز الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis:
strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
strategy_scores, pattern_analysis, symbol_data.get('symbol')
)
# تحديث الاستراتيجية الموصى بها
if base_scores:
best_strategy = max(base_scores.items(), key=lambda x: x[1])
best_strategy_name = best_strategy[0]
best_strategy_score = best_strategy[1]
symbol_data['recommended_strategy'] = best_strategy_name
symbol_data['strategy_confidence'] = best_strategy_score
return strategy_scores, base_scores
except Exception as error:
print(f"❌ خطأ في تقييم الاستراتيجيات: {error}")
fallback_scores = await self.get_fallback_scores()
return fallback_scores, fallback_scores
async def get_default_weights(self):
"""الأوزان الافتراضية للاستراتيجيات"""
return {
'trend_following': 0.15,
'mean_reversion': 0.12,
'breakout_momentum': 0.18,
'volume_spike': 0.10,
'whale_tracking': 0.20,
'pattern_recognition': 0.15,
'hybrid_ai': 0.10
}
async def get_fallback_scores(self):
"""الدرجات الاحتياطية عند الخطأ"""
return {
'trend_following': 0.5,
'mean_reversion': 0.5,
'breakout_momentum': 0.5,
'volume_spike': 0.5,
'whale_tracking': 0.5,
'pattern_recognition': 0.5,
'hybrid_ai': 0.5
}
async def _trend_following_strategy(self, symbol_data, market_context):
"""استراتيجية تتبع الاتجاه"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['4h', '1h', '15m']:
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
# محاذاة المتوسطات المتحركة
if self._check_ema_alignment(timeframe_indicators):
score += 0.20
# قوة الاتجاه (ADX)
adx_value = timeframe_indicators.get('adx', 0)
if adx_value > 25:
score += 0.15
# اتجاه إيشيموكو
if (timeframe_indicators.get('ichimoku_conversion', 0) >
timeframe_indicators.get('ichimoku_base', 0)):
score += 0.10
return min(score, 1.0)
except Exception as error:
return 0.3
def _check_ema_alignment(self, indicators):
"""التحقق من محاذاة المتوسطات المتحركة"""
required_emas = ['ema_9', 'ema_21', 'ema_50']
if all(ema in indicators for ema in required_emas):
return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
return False
async def _mean_reversion_strategy(self, symbol_data, market_context):
"""استراتيجية العودة للمتوسط"""
try:
score = 0.0
current_price = symbol_data['current_price']
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
hourly_indicators = indicators['1h']
# موقع السعر في بولينجر باند
if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
position_in_band = (current_price - hourly_indicators['bb_lower']) / (
hourly_indicators['bb_upper'] - hourly_indicators['bb_lower'])
if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35:
score += 0.45
if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65:
score += 0.45
# RSI في مناطق الذروة
rsi_value = hourly_indicators.get('rsi', 50)
if rsi_value < 30:
score += 0.35
elif rsi_value > 70:
score += 0.35
return min(score, 1.0)
except Exception as error:
return 0.3
async def _breakout_momentum_strategy(self, symbol_data, market_context):
"""استراتيجية زخم الاختراق"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['1h', '15m', '5m']:
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
# قوة الحجم
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
if volume_ratio > 1.8:
score += 0.25
elif volume_ratio > 1.3:
score += 0.15
# اتجاه MACD
if timeframe_indicators.get('macd_hist', 0) > 0:
score += 0.20
# السعر فوق VWAP
if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']:
score += 0.15
# RSI في المدى المتوسط
rsi_value = timeframe_indicators.get('rsi', 50)
if 40 <= rsi_value <= 70:
score += 0.10
if score > 0.2:
score = max(score, 0.4)
return min(score, 1.0)
except Exception as error:
return 0.4
async def _volume_spike_strategy(self, symbol_data, market_context):
"""استراتيجية ارتفاع الحجم"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['1h', '15m', '5m']:
if timeframe in indicators:
volume_ratio = indicators[timeframe].get('volume_ratio', 0)
if volume_ratio > 3.0:
score += 0.45
elif volume_ratio > 2.0:
score += 0.25
elif volume_ratio > 1.5:
score += 0.15
return min(score, 1.0)
except Exception as error:
return 0.3
async def _whale_tracking_strategy(self, symbol_data, market_context):
"""استراتيجية تتبع الحيتان"""
try:
whale_data = symbol_data.get('whale_data', {})
if not whale_data.get('data_available', False):
return 0.2
whale_signal = await self.data_manager.get_whale_trading_signal(
symbol_data['symbol'], whale_data, market_context
)
if whale_signal and whale_signal.get('action') != 'HOLD':
confidence = whale_signal.get('confidence', 0)
if whale_signal.get('action') in ['STRONG_BUY', 'BUY']:
return min(confidence * 1.2, 1.0)
elif whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
return min(confidence * 0.8, 1.0)
return 0.3
except Exception as error:
return 0.2
async def _pattern_recognition_strategy(self, symbol_data, market_context):
"""استراتيجية التعرف على الأنماط"""
try:
score = 0.0
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
score += pattern_analysis.get('pattern_confidence', 0) * 0.8
else:
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['4h', '1h']:
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
if (timeframe_indicators.get('rsi', 50) > 60 and
timeframe_indicators.get('macd_hist', 0) > 0 and
timeframe_indicators.get('volume_ratio', 0) > 1.5):
score += 0.35
return min(score, 1.0)
except Exception as error:
return 0.3
async def _hybrid_ai_strategy(self, symbol_data, market_context):
"""استراتيجية الهجين الذكية"""
try:
score = 0.0
# مونت كارلو للتنبؤ بالساعة القادمة
monte_carlo_probability = symbol_data.get('monte_carlo_probability', 0.5)
score += monte_carlo_probability * 0.4
# الدرجة النهائية الأساسية
final_score = symbol_data.get('final_score', 0.5)
score += final_score * 0.3
# تأثير سياق السوق
if market_context.get('btc_sentiment') == 'BULLISH':
score += 0.15
elif market_context.get('btc_sentiment') == 'BEARISH':
score -= 0.08
# تعزيز الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.15
score += pattern_bonus
return max(0.0, min(score, 1.0))
except Exception as error:
return 0.3
async def _fallback_strategy_score(self, strategy_name, symbol_data, market_context):
"""الدرجة الاحتياطية للاستراتيجيات"""
try:
base_score = symbol_data.get('final_score', 0.5)
if strategy_name == 'trend_following':
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
rsi_value = indicators['1h'].get('rsi', 50)
ema_9 = indicators['1h'].get('ema_9')
ema_21 = indicators['1h'].get('ema_21')
if ema_9 and ema_21 and ema_9 > ema_21 and 40 <= rsi_value <= 60:
return 0.6
return 0.4
elif strategy_name == 'mean_reversion':
current_price = symbol_data.get('current_price', 0)
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
rsi_value = indicators['1h'].get('rsi', 50)
bb_lower = indicators['1h'].get('bb_lower')
if bb_lower and current_price <= bb_lower * 1.02 and rsi_value < 35:
return 0.7
return 0.3
elif strategy_name == 'breakout_momentum':
volume_ratio = symbol_data.get('advanced_indicators', {}).get('1h', {}).get('volume_ratio', 0)
if volume_ratio > 1.5:
return 0.6
return 0.4
elif strategy_name == 'whale_tracking':
whale_data = symbol_data.get('whale_data', {})
if not whale_data.get('data_available', False):
return 0.2
return 0.3
return base_score
except Exception as error:
return 0.3
class MLProcessor:
def __init__(self, market_context, data_manager, learning_engine):
self.market_context = market_context
self.data_manager = data_manager
self.learning_engine = learning_engine
self.technical_analyzer = AdvancedTechnicalAnalyzer()
self.strategy_engine = MultiStrategyEngine(data_manager, learning_engine)
self.monte_carlo_analyzer = MonteCarloAnalyzer()
self.pattern_analyzer = ChartPatternAnalyzer()
async def process_and_score_symbol_enhanced(self, raw_data):
"""المعالجة المحسنة للرموز مع كل التحليلات المتقدمة"""
try:
if not raw_data or not raw_data.get('ohlcv'):
print(f"❌ بيانات غير صالحة للرمز {raw_data.get('symbol', 'unknown')}")
return None
symbol = raw_data['symbol']
print(f"🔍 معالجة الرمز {symbol} بالتحليلات المتقدمة...")
# التحليل الأساسي أولاً
base_analysis = await self.process_and_score_symbol(raw_data)
if not base_analysis:
return None
try:
# 1. حساب المؤشرات المتقدمة لجميع الأطر الزمنية
advanced_indicators = {}
for timeframe, candles in raw_data['ohlcv'].items():
if candles and len(candles) >= 20:
dataframe = self._create_dataframe(candles)
indicators = self.technical_analyzer.calculate_all_indicators(dataframe, timeframe)
advanced_indicators[timeframe] = indicators
base_analysis['advanced_indicators'] = advanced_indicators
# 2. محاكاة مونت كارلو للتنبؤ بالساعة القادمة
monte_carlo_probability = await self.monte_carlo_analyzer.predict_1h_probability(raw_data['ohlcv'])
base_analysis['monte_carlo_probability'] = monte_carlo_probability
base_analysis['monte_carlo_details'] = self.monte_carlo_analyzer.simulation_results
# 3. اكتشاف الأنماط البيانية
pattern_analysis = await self.pattern_analyzer.detect_chart_patterns(raw_data['ohlcv'])
base_analysis['pattern_analysis'] = pattern_analysis
# 4. تقييم الاستراتيجيات المتقدمة
strategy_scores, base_scores = await self.strategy_engine.evaluate_all_strategies(base_analysis, self.market_context)
base_analysis['strategy_scores'] = strategy_scores
base_analysis['base_strategy_scores'] = base_scores
# 5. تحديث الاستراتيجية الموصى بها
if base_scores:
best_strategy = max(base_scores.items(), key=lambda x: x[1])
best_strategy_name = best_strategy[0]
best_strategy_score = best_strategy[1]
base_analysis['recommended_strategy'] = best_strategy_name
base_analysis['strategy_confidence'] = best_strategy_score
if best_strategy_score > 0.3:
base_analysis['target_strategy'] = best_strategy_name
else:
base_analysis['target_strategy'] = 'GENERIC'
print(f"🎯 أفضل استراتيجية لـ {symbol}: {best_strategy_name} (ثقة: {best_strategy_score:.2f})")
# 6. حساب الدرجة النهائية المحسنة
enhanced_score = self._calculate_enhanced_final_score(base_analysis)
base_analysis['enhanced_final_score'] = enhanced_score
print(f"✅ اكتمل التحليل المتقدم لـ {symbol}:")
print(f" 📊 النهائي: {enhanced_score:.3f} | 🎯 مونت كارلو: {monte_carlo_probability:.3f}")
print(f" 🎯 نمط: {pattern_analysis.get('pattern_detected')} (ثقة: {pattern_analysis.get('pattern_confidence', 0):.2f})")
return base_analysis
except Exception as strategy_error:
print(f"❌ خطأ في التحليل المتقدم لـ {symbol}: {strategy_error}")
return base_analysis
except Exception as error:
print(f"❌ خطأ في المعالجة المحسنة للرمز {raw_data.get('symbol', 'unknown')}: {error}")
return await self.process_and_score_symbol(raw_data)
def _create_dataframe(self, candles):
"""إنشاء DataFrame من بيانات الشموع"""
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
return df
def _calculate_enhanced_final_score(self, analysis):
"""حساب الدرجة النهائية المحسنة"""
try:
base_score = analysis.get('final_score', 0.5)
monte_carlo_score = analysis.get('monte_carlo_probability', 0.5)
pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0)
strategy_confidence = analysis.get('strategy_confidence', 0.3)
# دمج جميع العوامل
enhanced_score = (
base_score * 0.25 +
monte_carlo_score * 0.30 +
pattern_confidence * 0.25 +
strategy_confidence * 0.20
)
return min(enhanced_score, 1.0)
except Exception as e:
print(f"❌ خطأ في حساب الدرجة المحسنة: {e}")
return analysis.get('final_score', 0.5)
async def process_and_score_symbol(self, raw_data):
"""المعالجة الأساسية للرمز (النسخة الأصلية المحفوظة)"""
try:
symbol = raw_data['symbol']
ohlcv_data = raw_data['ohlcv']
if not ohlcv_data:
return None
# حساب درجة أساسية مبسطة
current_price = raw_data.get('current_price', 0)
layer1_score = raw_data.get('layer1_score', 0.5)
reasons = raw_data.get('reasons_for_candidacy', [])
# حساب درجة نهائية مبسطة
final_score = layer1_score
return {
'symbol': symbol,
'current_price': current_price,
'final_score': final_score,
'enhanced_final_score': final_score,
'reasons_for_candidacy': reasons,
'layer1_score': layer1_score
}
except Exception as error:
print(f"❌ خطأ في المعالجة الأساسية للرمز {raw_data.get('symbol', 'unknown')}: {error}")
return None
def filter_top_candidates(self, candidates, number_of_candidates=10):
"""تصفية أفضل المرشحين"""
valid_candidates = [candidate for candidate in candidates if candidate is not None]
if not valid_candidates:
print("❌ لا توجد مرشحات صالحة للتصفية")
return []
# ترتيب حسب الدرجة المحسنة
sorted_candidates = sorted(valid_candidates,
key=lambda candidate: candidate.get('enhanced_final_score', 0),
reverse=True)
top_candidates = sorted_candidates[:number_of_candidates]
print(f"🎖️ أفضل {len(top_candidates)} مرشح:")
for i, candidate in enumerate(top_candidates):
score = candidate.get('enhanced_final_score', 0)
strategy = candidate.get('recommended_strategy', 'GENERIC')
mc_score = candidate.get('monte_carlo_probability', 0)
pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern')
print(f" {i+1}. {candidate['symbol']}:")
print(f" 📊 النهائي: {score:.3f} | 🎯 مونت كارلو: {mc_score:.3f}")
print(f" 🎯 استراتيجية: {strategy} | نمط: {pattern}")
return top_candidates
def safe_json_parse(json_string):
"""تحليل JSON آمن مع معالجة الأخطاء"""
try:
# محاولة التحليل المباشر
return json.loads(json_string)
except json.JSONDecodeError as e:
try:
# محاولة إصلاح المشاكل الشائعة في JSON
# إصلاح الاقتباسات المفردة
json_string = json_string.replace("'", '"')
# إصلاح الأسماء بدون اقتباسات
json_string = re.sub(r'(\w+):', r'"\1":', json_string)
# إصلاح الفواصل الزائدة
json_string = re.sub(r',\s*}', '}', json_string)
json_string = re.sub(r',\s*]', ']', json_string)
return json.loads(json_string)
except json.JSONDecodeError:
print(f"❌ فشل تحليل JSON بعد الإصلاح: {e}")
return None
print("✅ ML Processor loaded - Advanced Analysis with Monte Carlo & Pattern Detection Ready") |