Spaces:
Running
Running
File size: 16,863 Bytes
2e2955f 70c8d92 08b6454 6b28865 2e2955f 70c8d92 08b6454 9fdd567 08b6454 2e2955f 1a220bc 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 1a220bc 2e2955f 1a220bc 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 08b6454 2e2955f 3b90f0e 2e2955f 70c8d92 8d3a60a 2e2955f 7488919 2e2955f a715505 2e2955f a715505 2e2955f 08b6454 2e2955f 08b6454 2e2955f 62250f8 2e2955f 62250f8 8d3a60a 70c8d92 2e2955f dc62264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# app.py (V14.0 - Unified Smart Cycle - Full Production Version)
import os, sys, traceback, asyncio, gc, json
from datetime import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, BackgroundTasks
# --- استيراد الوحدات الأساسية ---
try:
from r2 import R2Service
from data_manager import DataManager
from ml_engine.processor import MLProcessor
from trade_manager import TradeManager
from LLM import LLMService
from learning_hub.hub_manager import LearningHubManager
# وحدات الطبقة الثانية
from whale_monitor.core import EnhancedWhaleMonitor
from sentiment_news import NewsFetcher
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ImportError as e:
# إيقاف النظام في حال فشل استيراد أي مكون حيوي
sys.exit(f"❌ Fatal Init Error: {e}")
# --- المتغيرات العامة (Global Instances) ---
r2 = None
data_manager = None
ml_processor = None
trade_manager = None
llm_service = None
learning_hub = None
whale_monitor = None
news_fetcher = None
vader = None
class SystemState:
def __init__(self):
self.ready = False
self.cycle_running = False
sys_state = SystemState()
# ==============================================================================
# 🚀 تهيئة النظام الكاملة (Full System Initialization)
# ==============================================================================
async def initialize_system():
global r2, data_manager, ml_processor, trade_manager, llm_service, learning_hub
global whale_monitor, news_fetcher, vader
if sys_state.ready: return
print("\n🔌 [System V14] Initializing Smart Core...")
try:
# 1. الخدمات الأساسية والبنية التحتية
r2 = R2Service()
contracts = await r2.load_contracts_db_async()
whale_monitor = EnhancedWhaleMonitor(contracts_db=contracts, r2_service=r2)
data_manager = DataManager(contracts, whale_monitor, r2)
await data_manager.initialize()
news_fetcher = NewsFetcher()
vader = SentimentIntensityAnalyzer()
# 2. العقل المركزي (LLM) ومحور التعلم
llm_service = LLMService()
llm_service.r2_service = r2 # لربط حفظ البرومبتات
# سيتم ربط learning_hub لاحقاً لتجنب التبعية الدائرية
learning_hub = LearningHubManager(r2, llm_service, data_manager)
await learning_hub.initialize()
llm_service.learning_hub = learning_hub # الربط العكسي
# 3. محركات التحليل والتنفيذ
ml_processor = MLProcessor(None, data_manager, learning_hub)
await ml_processor.initialize()
trade_manager = TradeManager(r2, data_manager, ml_processor.titan, ml_processor.pattern_analyzer)
await trade_manager.initialize_sentry_exchanges()
# بدء حلقات المراقبة الخلفية للحارس
asyncio.create_task(trade_manager.start_sentry_loops())
sys_state.ready = True
print("✅ [System] All Systems GO. Ready for action.")
except Exception as e:
print(f"❌ [Init Failed] {e}")
traceback.print_exc()
sys.exit(1) # خروج اضطراري في حال فشل التهيئة
# ==============================================================================
# 🧠 الدورة الموحدة الذكية (Unified Smart Cycle Entry Point)
# ==============================================================================
async def run_unified_cycle():
"""
نقطة الدخول الوحيدة للدورات.
تقرر تلقائياً بين وضع 'البحث عن فرص' ووضع 'إدارة الصفقات المفتوحة'.
"""
if not sys_state.ready:
print("⏳ [Cycle Skipped] System not ready yet.")
return
if sys_state.cycle_running:
print("⏳ [Cycle Skipped] Another cycle is already running.")
return
# محاولة الحصول على القفل لمنع تداخل العمليات
if not r2.acquire_lock():
print("🔒 [Cycle Skipped] Locked by another process.")
return
sys_state.cycle_running = True
start_time = datetime.now()
try:
# فحص حالة الحارس: هل هناك صفقات نشطة؟
open_trades = list(trade_manager.open_positions.values())
if open_trades:
# --- 🛡️ الفرع الاستراتيجي: وضع إعادة التقييم ---
print(f"\n⚔️ [Unified Cycle] Active trades detected ({len(open_trades)}). Engaging STRATEGIC RE-ANALYSIS mode.")
await _run_reanalysis_mode(open_trades)
else:
# --- 🔭 فرع المستكشف: وضع البحث عن فرص ---
print("\n🔭 [Unified Cycle] No active trades. Engaging EXPLORER mode.")
await _run_explorer_mode()
except Exception as e:
print(f"❌ [Cycle Error] An unexpected error occurred: {e}")
traceback.print_exc()
finally:
# تنظيف وإطلاق القفل دائماً
r2.release_lock()
sys_state.cycle_running = False
gc.collect() # تنظيف الذاكرة
print(f"🏁 [Cycle Finished] Duration: {(datetime.now() - start_time).total_seconds():.1f}s")
# ==============================================================================
# 🛡️ الفرع 1: وضع إعادة التقييم الاستراتيجي (Strategic Re-analysis Mode)
# ==============================================================================
async def _run_reanalysis_mode(open_trades):
"""إعادة تقييم جميع الصفقات المفتوحة باستخدام العقل الكلي"""
for trade in open_trades:
symbol = trade['symbol']
print(f" ⚖️ Re-evaluating {symbol} with Omniscient Brain...")
try:
# 1. جمع البيانات الطازجة (Fresh Data Snapshot)
current_price = await data_manager.get_latest_price_async(symbol)
whale_data = await whale_monitor.get_symbol_whale_activity(symbol)
news_text = await news_fetcher.get_news_for_symbol(symbol)
# محاولة الحصول على تحديث سريع لدرجة تيتان (اختياري، يعتمد على توفر البيانات)
# هنا نستخدم 0 كقيمة افتراضية إذا لم نتمكن من إجراء تحليل كامل سريعاً
titan_score = 0.0
current_data_packet = {
'symbol': symbol,
'current_price': current_price,
'titan_score': titan_score,
'whale_data': whale_data,
'news_text': news_text
}
# 2. استشارة العقل الكلي (Omniscient Brain Consultation)
decision = await llm_service.re_analyze_trade_async(trade, current_data_packet)
# 3. تنفيذ أوامر العقل فوراً
if decision:
action = decision.get('action')
reason = decision.get('reasoning', 'Strategic update by Brain')
if action == 'EMERGENCY_EXIT':
print(f" 🚨 BRAIN COMMAND: IMMEDIATE EMERGENCY EXIT for {symbol}!")
await trade_manager.execute_emergency_exit(symbol, f"Brain Command: {reason}")
elif action == 'UPDATE_TARGETS':
new_tp = decision.get('new_tp')
new_sl = decision.get('new_sl')
if new_tp or new_sl:
print(f" 🎯 BRAIN COMMAND: Update targets for {symbol} (TP: {new_tp}, SL: {new_sl})")
await trade_manager.update_trade_targets(symbol, new_tp, new_sl, f"Brain Update: {reason}")
else:
print(f" ⚠️ Brain requested target update for {symbol} but provided no values.")
else:
# HOLD or unknown action
print(f" ✅ Brain verdict for {symbol}: HOLD. Continuing strategy. ({reason[:50]}...)")
else:
print(f" ⚠️ Failed to get a valid re-analysis decision from Brain for {symbol}.")
except Exception as e:
print(f" ❌ Error re-evaluating {symbol}: {e}")
# ==============================================================================
# 🔭 الفرع 2: وضع المستكشف (The 4-Layer Explorer Mode)
# ==============================================================================
async def _run_explorer_mode():
"""تنفيذ دورة البحث الكاملة عبر الطبقات الأربع"""
try:
# ---------------------------------------------------------
# Layer 1: Rapid Hybrid Screening (Titan + Patterns + Simple MC)
# ---------------------------------------------------------
print("\n--- 🛡️ Layer 1: Rapid Screening ---")
raw_candidates = await data_manager.layer1_rapid_screening()
if not raw_candidates:
print(" ⚠️ No initial candidates found in Layer 1.")
return
l1_passed = []
data_queue = asyncio.Queue()
# بدء بث البيانات ومعالجتها بالتوازي
producer = asyncio.create_task(data_manager.stream_ohlcv_data(raw_candidates, data_queue))
while True:
batch = await data_queue.get()
if batch is None:
data_queue.task_done()
break
for raw_data in batch:
# المعالجة الأولية باستخدام MLProcessor
res = await ml_processor.process_and_score_symbol_enhanced(raw_data)
# عتبة مرور أولية مخففة (مثلاً 0.50) للسماح بمرور عدد كافٍ للطبقة الثانية
if res and res.get('enhanced_final_score', 0.0) >= 0.50:
l1_passed.append(res)
data_queue.task_done()
await producer
# ترتيب واختيار أفضل 10 فقط للتحليل العميق
l1_passed.sort(key=lambda x: x['enhanced_final_score'], reverse=True)
layer2_candidates = l1_passed[:10]
print(f"✅ Layer 1 Complete. {len(layer2_candidates)} candidates advanced to Layer 2.")
if not layer2_candidates: return
# ---------------------------------------------------------
# Layer 2: Deep Analysis (Whales + News + Advanced MC)
# ---------------------------------------------------------
print("\n--- 🐳 Layer 2: Deep Analysis ---")
l2_scored = []
for cand in layer2_candidates:
symbol = cand['symbol']
print(f" 🔎 Deep analyzing {symbol}...")
# A. تحليل الحيتان
whale_data = await whale_monitor.get_symbol_whale_activity(symbol)
# B. تحليل الأخبار والمشاعر
news_text = await news_fetcher.get_news_for_symbol(symbol)
# تحليل VADER بسيط للمساعدة في الترتيب الأولي (النموذج الضخم سيقرأ النص الخام لاحقاً)
news_score = vader.polarity_scores(news_text)['compound'] if news_text else 0.0
# C. حساب "النقاط المعززة" (Enhanced Score) لترتيب المرشحين
# المعادلة: 50% درجة الطبقة الأولى + 30% بونص حيتان + 20% بونص أخبار
l1_score = cand['enhanced_final_score']
whale_bonus = 0.15 if whale_data.get('trading_signal', {}).get('action') in ['BUY', 'STRONG_BUY'] else 0.0
news_bonus = 0.10 if news_score > 0.25 else (-0.10 if news_score < -0.25 else 0.0)
final_l2_score = min(1.0, max(0.0, l1_score + whale_bonus + news_bonus))
# تحديث سجل المرشح بكل البيانات الجديدة (ليراها النموذج الضخم)
cand.update({
'layer2_score': final_l2_score,
'whale_data': whale_data,
'news_text': news_text,
'news_score_raw': news_score
})
l2_scored.append(cand)
# اختيار أفضل 5 للطبقة الثالثة
l2_scored.sort(key=lambda x: x['layer2_score'], reverse=True)
layer3_candidates = l2_scored[:5]
print(f"✅ Layer 2 Complete. Top 5 candidates selected for Brain validation.")
# ---------------------------------------------------------
# Layer 3: The Brain Filter (LLM Validation)
# ---------------------------------------------------------
print("\n--- 🧠 Layer 3: Omniscient Brain Validation ---")
approved_targets = []
for cand in layer3_candidates:
symbol = cand['symbol']
print(f" ⚖️ Consulting Brain for {symbol}...")
# استشارة العقل الكلي بوجبة البيانات الكاملة
decision = await llm_service.get_trading_decision(cand)
if decision and decision.get('action') == 'WATCH':
confidence = decision.get('confidence_level', 0)
print(f" 🎉 APPROVED by Brain! Confidence: {confidence:.2f}")
cand['llm_decision'] = decision
approved_targets.append(cand)
else:
reason = decision.get('reasoning', 'Unknown reason') if decision else 'Brain Consultation Failed'
print(f" 🛑 REJECTED by Brain: {reason[:60]}...")
# ---------------------------------------------------------
# Layer 4: Active Sentry Handover
# ---------------------------------------------------------
print("\n--- 🛡️ Layer 4: Sentry Handover ---")
if approved_targets:
print(f"🚀 Handing over {len(approved_targets)} elite targets to Sentry for tactical execution.")
await trade_manager.update_sentry_watchlist(approved_targets)
else:
print("😴 No candidates passed all 4 layers this cycle. Sentry remains on standby.")
except Exception as e:
print(f"❌ [Explorer Mode Error] {e}")
traceback.print_exc()
# ==============================================================================
# 🔥 تطبيق FastAPI (نقاط النهاية)
# ==============================================================================
@asynccontextmanager
async def lifespan(app: FastAPI):
# تهيئة النظام عند البدء
await initialize_system()
yield
# تنظيف الموارد عند الإغلاق
if trade_manager: await trade_manager.stop_sentry_loops()
if data_manager: await data_manager.close()
print("👋 System Shutdown Gracefully.")
app = FastAPI(lifespan=lifespan, title="Titan 4-Layer Hybrid System V14")
@app.get("/")
def root():
return {
"status": "Smart Hybrid System Online",
"initialized": sys_state.ready,
"mode": "Re-analysis" if trade_manager and trade_manager.open_positions else "Explorer"
}
@app.get("/run-cycle")
async def trigger_cycle(background_tasks: BackgroundTasks):
"""نقطة الاستدعاء الخارجية (مثلاً كل 15 دقيقة)"""
if not sys_state.ready:
raise HTTPException(status_code=503, detail="System is still initializing...")
# إضافة الدورة الموحدة إلى مهام الخلفية
background_tasks.add_task(run_unified_cycle)
return {"message": "Unified smart cycle triggered in background."}
@app.get("/status")
async def get_status():
"""جلب حالة النظام التفصيلية"""
return {
"initialized": sys_state.ready,
"cycle_running": sys_state.cycle_running,
"open_positions_count": len(trade_manager.open_positions) if trade_manager else 0,
"open_positions": list(trade_manager.open_positions.keys()) if trade_manager else [],
"watchlist_count": len(trade_manager.watchlist) if trade_manager else 0,
"watchlist": list(trade_manager.watchlist.keys()) if trade_manager else []
}
if __name__ == "__main__":
import uvicorn
# تشغيل السيرفر
uvicorn.run(app, host="0.0.0.0", port=7860) |