File size: 36,474 Bytes
5cda447
77b5042
cf3f424
90767a7
53cf6c0
 
90767a7
 
 
53c587a
cf3f424
60efff2
 
 
53cf6c0
cf3f424
53cf6c0
 
 
 
cf3f424
53cf6c0
1af938b
 
cf3f424
77b5042
 
1af938b
cf3f424
77b5042
 
cf3f424
77b5042
cf3f424
77b5042
cf3f424
 
 
77b5042
 
cf3f424
 
 
 
 
77b5042
 
cf3f424
77b5042
cf3f424
77b5042
 
cf3f424
 
 
 
 
77b5042
cf3f424
 
 
 
 
 
 
 
 
 
3b07030
53cf6c0
 
 
 
 
 
 
 
aaaa707
53cf6c0
cf3f424
 
53cf6c0
 
 
 
3b07030
632c1d5
53cf6c0
 
 
 
 
 
3b07030
491d9d6
cf3f424
491d9d6
cf3f424
3b07030
53cf6c0
1af938b
3b07030
474828e
 
aaaa707
474828e
 
 
cf3f424
474828e
3b07030
cf3f424
 
 
474828e
 
632c1d5
cf3f424
632c1d5
cf3f424
632c1d5
3b07030
 
632c1d5
3b07030
53cf6c0
cf3f424
53cf6c0
cf3f424
 
 
 
53cf6c0
1af938b
90767a7
632c1d5
474828e
632c1d5
3b07030
53cf6c0
cf3f424
632c1d5
3b07030
90767a7
53cf6c0
90767a7
3b07030
474828e
632c1d5
53cf6c0
aa957eb
 
474828e
3b07030
aa957eb
474828e
 
 
cf3f424
 
 
 
1ca5db3
cf3f424
 
3b07030
474828e
aaaa707
 
 
 
3b07030
cf3f424
1ca5db3
 
 
 
 
 
 
 
 
 
3b07030
53c587a
 
3b07030
1ca5db3
 
3b07030
632c1d5
1ca5db3
 
53cf6c0
 
 
474828e
53cf6c0
 
 
60efff2
 
 
cf3f424
60efff2
 
 
 
474828e
cf3f424
474828e
 
 
cf3f424
474828e
cf3f424
 
474828e
 
53cf6c0
 
e5f42cf
 
 
 
53cf6c0
 
 
 
 
 
474828e
b449279
53cf6c0
90767a7
 
1af938b
474828e
aaaa707
1af938b
aaaa707
474828e
 
 
e5f42cf
 
 
 
 
 
 
 
 
 
 
 
 
 
5cda447
e5f42cf
53cf6c0
 
cf3f424
1af938b
cf3f424
3b07030
e5f42cf
 
1af938b
474828e
cf3f424
474828e
e5f42cf
474828e
1af938b
474828e
 
 
 
aaaa707
1af938b
 
 
53c587a
1af938b
53c587a
1af938b
53c587a
1af938b
 
 
 
 
 
53c587a
1af938b
cf3f424
 
1af938b
cf3f424
e5f42cf
 
 
 
 
 
 
 
 
 
1af938b
cf3f424
1af938b
cf3f424
e5f42cf
cf3f424
 
 
 
 
1ca5db3
 
 
 
 
cf3f424
 
 
 
 
 
 
1af938b
 
53cf6c0
 
1af938b
cf3f424
60efff2
cf3f424
60efff2
cf3f424
 
60efff2
 
 
 
 
cf3f424
1ca5db3
1af938b
1ca5db3
 
 
1af938b
cf3f424
 
 
 
60efff2
cf3f424
 
 
60efff2
20dc709
53c587a
53cf6c0
 
cf3f424
491d9d6
cf3f424
53cf6c0
 
1af938b
3b07030
474828e
 
 
 
 
cf3f424
474828e
aaaa707
474828e
cf3f424
 
474828e
3b07030
632c1d5
cf3f424
632c1d5
cf3f424
632c1d5
3b07030
 
632c1d5
3b07030
5cda447
 
 
 
 
53cf6c0
 
90767a7
632c1d5
474828e
632c1d5
53cf6c0
cf3f424
632c1d5
53cf6c0
5cda447
 
 
53cf6c0
90767a7
cf3f424
aa957eb
cf3f424
3b07030
 
 
474828e
53c587a
5cda447
 
aaaa707
 
 
cf3f424
aaaa707
cf3f424
5cda447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
3b07030
632c1d5
5cda447
53cf6c0
 
90767a7
53cf6c0
5cda447
53cf6c0
474828e
 
cf3f424
 
 
474828e
 
cf3f424
5cda447
 
 
 
 
 
 
cf3f424
 
 
e5f42cf
 
 
 
cf3f424
53cf6c0
e5f42cf
 
 
 
 
 
 
 
 
 
 
 
 
 
5cda447
53cf6c0
53c587a
e5f42cf
 
1af938b
53c587a
474828e
 
 
e5f42cf
474828e
 
5cda447
 
474828e
 
 
 
 
1af938b
 
 
 
53c587a
 
 
 
1af938b
 
 
 
53c587a
1af938b
474828e
3b07030
5cda447
 
 
 
 
 
 
 
 
 
 
 
 
 
3b07030
 
1af938b
53c587a
5cda447
474828e
 
5cda447
 
474828e
 
 
 
cf3f424
 
474828e
1af938b
 
5cda447
53cf6c0
aaaa707
 
cf3f424
 
474828e
53cf6c0
 
 
 
b449279
53c587a
 
 
 
 
b449279
aaaa707
53c587a
0158ed7
e5f42cf
 
0158ed7
e5f42cf
 
 
 
 
 
0158ed7
 
 
 
 
53c587a
 
aaaa707
53c587a
 
aaaa707
 
0158ed7
53c587a
5cda447
0158ed7
53cf6c0
53c587a
5cda447
1af938b
5cda447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# LLM.py (Updated to V5.4 - Fixed Re-Analysis TP/SL Wipe Bug)
import os, traceback, asyncio, json, time
import re 
from datetime import datetime
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError
import numpy as np
from sentiment_news import NewsFetcher
from helpers import validate_required_fields, format_technical_indicators, format_strategy_scores, format_candle_data_for_pattern_analysis, format_whale_analysis_for_llm, parse_json_from_response
from ml_engine.processor import safe_json_parse 

NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"

# (PatternAnalysisEngine - لا تغيير)
class PatternAnalysisEngine:
    def __init__(self, llm_service):
        self.llm = llm_service
    def _format_chart_data_for_llm(self, ohlcv_data):
        if not ohlcv_data: return "Insufficient chart data for pattern analysis"
        try:
            all_timeframes = []
            for timeframe, candles in ohlcv_data.items():
                if candles and len(candles) >= 10:
                    raw_candle_summary = self._format_raw_candle_data(candles, timeframe)
                    all_timeframes.append(f"=== {timeframe.upper()} TIMEFRAME ({len(candles)} CANDLES) ===\n{raw_candle_summary}")
            return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
        except Exception as e: return f"Error formatting chart data: {str(e)}"
    def _format_raw_candle_data(self, candles, timeframe):
        try:
            if len(candles) < 10: return f"Only {len(candles)} candles available - insufficient for deep pattern analysis"
            analysis_candles = candles[-50:] if len(candles) > 50 else candles
            summary = []; summary.append(f"Total candles: {len(candles)} (showing last {len(analysis_candles)})"); summary.append("Recent candles (newest to oldest):")
            for i in range(min(15, len(analysis_candles))):
                idx = len(analysis_candles) - 1 - i; candle = analysis_candles[idx]
                try: timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%Y-%m-%d %H:%M:%S')
                except: timestamp = "unknown"
                open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5]
                candle_type = "🟢 BULLISH" if close > open_price else "🔴 BEARISH" if close < open_price else "⚪ NEUTRAL"
                body_size = abs(close - open_price); body_percent = (body_size / open_price * 100) if open_price > 0 else 0
                wick_upper = high - max(open_price, close); wick_lower = min(open_price, close) - low; total_range = high - low
                if total_range > 0: body_ratio = (body_size / total_range) * 100; upper_wick_ratio = (wick_upper / total_range) * 100; lower_wick_ratio = (wick_lower / total_range) * 100
                else: body_ratio = upper_wick_ratio = lower_wick_ratio = 0
                summary.append(f"{i+1:2d}. {timestamp} | {candle_type}"); summary.append(f"     O:{open_price:.8f} H:{high:.8f} L:{low:.8f} C:{close:.8f}"); summary.append(f"     Body: {body_percent:.2f}% | Body/Range: {body_ratio:.1f}%"); summary.append(f"     Wicks: Upper {upper_wick_ratio:.1f}% / Lower {lower_wick_ratio:.1f}%"); summary.append(f"     Volume: {volume:,.0f}")
            if len(analysis_candles) >= 20:
                stats = self._calculate_candle_statistics(analysis_candles)
                summary.append(f"\n📊 STATISTICAL ANALYSIS:"); summary.append(f"• Price Change: {stats['price_change']:+.2f}%"); summary.append(f"• Average Body Size: {stats['avg_body']:.4f}%"); summary.append(f"• Volatility (ATR): {stats['atr']:.6f}"); summary.append(f"• Trend: {stats['trend']}"); summary.append(f"• Support: {stats['support']:.6f}"); summary.append(f"• Resistance: {stats['resistance']:.6f}")
            return "\n".join(summary)
        except Exception as e: return f"Error formatting raw candle data: {str(e)}"
    def _calculate_candle_statistics(self, candles):
        try:
            closes = [c[4] for c in candles]; opens = [c[1] for c in candles]; highs = [c[2] for c in candles]; lows = [c[3] for c in candles]
            first_close = closes[0]; last_close = closes[-1]; price_change = ((last_close - first_close) / first_close) * 100
            body_sizes = [abs(close - open) for open, close in zip(opens, closes)]; avg_body = (sum(body_sizes) / len(body_sizes)) / first_close * 100 if first_close > 0 else 0
            true_ranges = [];
            for i in range(1, len(candles)): high, low, prev_close = highs[i], lows[i], closes[i-1]; tr1 = high - low; tr2 = abs(high - prev_close); tr3 = abs(low - prev_close); true_ranges.append(max(tr1, tr2, tr3))
            atr = sum(true_ranges) / len(true_ranges) if true_ranges else 0
            if price_change > 3: trend = "STRONG UPTREND"
            elif price_change > 1: trend = "UPTREND"
            elif price_change < -3: trend = "STRONG DOWNTREND"
            elif price_change < -1: trend = "DOWNTREND"
            else: trend = "SIDEWAYS"
            support = min(lows); resistance = max(highs)
            return {'price_change': price_change, 'avg_body': avg_body, 'atr': atr, 'trend': trend, 'support': support, 'resistance': resistance}
        except Exception as e: return {'price_change': 0, 'avg_body': 0, 'atr': 0, 'trend': 'UNKNOWN', 'support': 0, 'resistance': 0}
    async def analyze_chart_patterns(self, symbol, ohlcv_data): pass 
    def _parse_pattern_response(self, response_text): pass 


class LLMService:
    def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
        self.api_key = api_key
        self.model_name = model_name
        self.temperature = temperature
        self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
        self.news_fetcher = NewsFetcher()
        self.pattern_engine = PatternAnalysisEngine(self) 
        self.semaphore = asyncio.Semaphore(5)
        self.r2_service = None
        self.learning_hub = None

    def _rate_limit_nvidia_api(func):
        @wraps(func)
        @on_exception(expo, RateLimitError, max_tries=5)
        async def wrapper(*args, **kwargs):
            return await func(*args, **kwargs)
        return wrapper

    async def get_trading_decision(self, data_payload: dict):
        try:
            symbol = data_payload.get('symbol', 'unknown')
            target_strategy = data_payload.get('target_strategy', 'GENERIC')

            ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
            if not ohlcv_data: return None
            total_candles = sum(len(data) for data in ohlcv_data.values() if data) if ohlcv_data else 0
            if total_candles < 30: return None

            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            whale_data = data_payload.get('whale_data', {})

            statistical_feedback = "No statistical learning data yet."
            active_context_playbook = "No active learning rules available."
            
            if self.learning_hub and self.learning_hub.initialized:
                statistical_feedback = await self.learning_hub.get_statistical_feedback_for_llm(target_strategy)
                active_context_playbook = await self.learning_hub.get_active_context_for_llm(
                    domain="strategy", query=f"{target_strategy} {symbol}"
                )

            prompt = self._create_comprehensive_sentry_prompt(
                data_payload, news_text, None, whale_data, 
                statistical_feedback, active_context_playbook
            )
            
            if self.r2_service:
                analysis_data = { 'symbol': symbol, 'target_strategy': target_strategy, 'statistical_feedback': statistical_feedback, 'active_context_playbook': active_context_playbook }
                await self.r2_service.save_llm_prompts_async(
                    symbol, 'sentry_watchlist_decision_v5', prompt, analysis_data
                )

            async with self.semaphore:
                response = await self._call_llm(prompt)

            decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
            
            if decision_dict:
                if decision_dict.get('action') == 'WATCH' and 'strategy_to_watch' not in decision_dict:
                     print(f"   ⚠️ LLM {symbol}: Action is WATCH but strategy_to_watch is missing. Forcing HOLD.")
                     decision_dict['action'] = 'HOLD'
                
                decision_dict['model_source'] = self.model_name
                decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
                return decision_dict
            else:
                print(f"❌ LLM parsing failed for {symbol} - no fallback decisions")
                return None

        except Exception as e:
            print(f"❌ Error in get_trading_decision for {data_payload.get('symbol', 'unknown')}: {e}"); traceback.print_exc()
            return None

    def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
        try:
            json_str = parse_json_from_response(response_text)
            if not json_str:
                print(f"❌ Failed to extract JSON from LLM response for {symbol}")
                return None

            decision_data = safe_json_parse(json_str)
            if not decision_data:
                 print(f"❌ Failed to parse JSON (safe_json_parse) for {symbol}: {response_text}")
                 return None

            if fallback_strategy == "reflection" or fallback_strategy == "distillation":
                 return decision_data

            required_fields = ['action', 'reasoning', 'confidence_level', 'pattern_identified_by_llm']
            
            if decision_data.get('action') == 'WATCH':
                required_fields.append('strategy_to_watch')
            elif decision_data.get('action') == 'BUY': # (احتياطي للنظام القديم)
                 required_fields.extend(['risk_assessment', 'stop_loss', 'take_profit', 'expected_target_minutes', 'exit_profile', 'exit_parameters'])

            if not validate_required_fields(decision_data, required_fields):
                print(f"❌ Missing required fields in LLM response for {symbol}")
                missing = [f for f in required_fields if f not in decision_data]
                print(f"   MIA: {missing}")
                return None
            
            action = decision_data.get('action')
            if action not in ['WATCH', 'HOLD']:
                # (السماح بـ 'BUY' كإجراء احتياطي إذا فشل النموذج في فهم 'WATCH')
                if action == 'BUY':
                    print(f"⚠️ LLM {symbol} returned 'BUY' instead of 'WATCH'. Converting to 'WATCH'...")
                    decision_data['action'] = 'WATCH'
                    decision_data['strategy_to_watch'] = decision_data.get('strategy', fallback_strategy)
                else:
                    print(f"⚠️ LLM suggested unsupported action ({action}) for {symbol}. Forcing HOLD.")
                    decision_data['action'] = 'HOLD'
            
            if decision_data.get('action') == 'BUY': # (معالجة إضافية للحالة الاحتياطية)
                decision_data['trade_type'] = 'LONG'
            else:
                decision_data['trade_type'] = None

            # (تعديل: استخدام 'strategy_to_watch' بدلاً من 'strategy')
            strategy_value = decision_data.get('strategy_to_watch') if decision_data.get('action') == 'WATCH' else decision_data.get('strategy')
            if not strategy_value or strategy_value == 'unknown':
                decision_data['strategy'] = fallback_strategy
                if decision_data.get('action') == 'WATCH':
                    decision_data['strategy_to_watch'] = fallback_strategy

            return decision_data
        except Exception as e:
            print(f"❌ Error parsing LLM response for {symbol}: {e}")
            return None

    async def _get_pattern_analysis(self, data_payload):
        try:
            symbol = data_payload['symbol']
            ohlcv_data = data_payload.get('raw_ohlcv') or data_payload.get('ohlcv')
            if ohlcv_data: return None 
            return None
        except Exception as e:
            print(f"❌ Pattern analysis failed for {data_payload.get('symbol')}: {e}")
            return None

    def _create_comprehensive_sentry_prompt(
        self, 
        payload: dict, 
        news_text: str, 
        pattern_analysis: dict, 
        whale_data: dict, 
        statistical_feedback: str, 
        active_context_playbook: str
    ) -> str:
        
        symbol = payload.get('symbol', 'N/A')
        current_price = payload.get('current_price', 'N/A')
        
        price_change_24h_raw = payload.get('price_change_24h', 0)
        price_change_24h_display = f"{price_change_24h_raw:+.2f}%" if isinstance(price_change_24h_raw, (int, float)) else "N/A"
        
        reasons = payload.get('reasons_for_candidacy', [])
        sentiment_data = payload.get('sentiment_data', {})
        advanced_indicators = payload.get('advanced_indicators', {})
        strategy_scores = payload.get('strategy_scores', {})
        recommended_strategy = payload.get('recommended_strategy', 'N/A')
        target_strategy = payload.get('target_strategy', 'GENERIC')
        enhanced_final_score = payload.get('enhanced_final_score', 0)
        enhanced_score_display = f"{enhanced_final_score:.3f}" if isinstance(enhanced_final_score, (int, float)) else str(enhanced_final_score)

        indicators_summary = format_technical_indicators(advanced_indicators)
        strategies_summary = format_strategy_scores(strategy_scores, recommended_strategy)
        whale_analysis_section = format_whale_analysis_for_llm(whale_data)
        ohlcv_data = payload.get('raw_ohlcv') or payload.get('ohlcv', {})
        candle_data_section = self._format_candle_data_comprehensive(ohlcv_data) 
        market_context_section = self._format_market_context(sentiment_data)
        
        statistical_feedback_section = f"🧠 STATISTICAL FEEDBACK (Slow-Learner):\n{statistical_feedback}"
        playbook_section = f"📚 LEARNING PLAYBOOK (Fast-Learner Active Rules):\n{active_context_playbook}"

        exhaustion_warning = ""
        try:
            rsi_1d = advanced_indicators.get('1d', {}).get('rsi', 50)
            rsi_4h = advanced_indicators.get('4h', {}).get('rsi', 50)
            if price_change_24h_raw > 40 and (rsi_1d > 75 or rsi_4h > 75):
                exhaustion_warning = (
                    "🚩 **تنبيه استراتيجي: تم رصد زخم مرتفع (احتمال إرهاق)** 🚩\n"
                    f"الأصل مرتفع {price_change_24h_display} خلال 24 ساعة ومؤشر RSI على 1D/4H في منطقة تشبع شرائي.\n"
                    "هذا ليس أمر 'إيقاف'، بل هو 'تحدي تحليلي'. مهمتك هي التحقيق وتحديد ما إذا كان هذا:\n"
                    "1.  **فخ إرهاق (Exhaustion Trap):** (يجب 'HOLD')\n"
                    "2.  **اختراق استمراري حقيقي (Sustainable Continuation):** (يمكن 'WATCH')\n"
                    "------------------------------------------------------------------"
                )
        except Exception:
            pass 


        prompt = f"""
COMPREHENSIVE STRATEGIC ANALYSIS FOR {symbol} (FOR SENTRY WATCHLIST)

🚨 IMPORTANT: You are a STRATEGIC EXPLORER. Your job is NOT to execute a trade. Your job is to decide if this asset is interesting enough to be passed to the "SENTRY" (a high-speed tactical agent) for real-time monitoring and execution.

{exhaustion_warning}

🎯 STRATEGY CONTEXT:
* Target Strategy: {target_strategy}
* Recommended Strategy (from ML): {recommended_strategy}
* Current Price: ${current_price}
* 24H Price Change: {price_change_24h_display}
* Enhanced System Score: {enhanced_score_display}

--- LEARNING HUB INPUT (CRITICAL) ---
{playbook_section}
{statistical_feedback_section}
--- END OF LEARNING INPUT ---

📊 TECHNICAL INDICATORS (ALL TIMEFRAMES):
{indicators_summary}

📈 RAW CANDLE DATA SUMMARY & STATISTICS (FOR YOUR PATTERN ANALYSIS):
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}

🎯 STRATEGY ANALYSIS (System's recommendation based on various factors):
{strategies_summary}

🐋 WHALE ACTIVITY ANALYSIS:
{whale_analysis_section}

🌍 MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this analysis."}

---
🎯 SENTRY DECISION INSTRUCTIONS (WATCH or HOLD):

1.  **PERFORM CHART PATTERN ANALYSIS:** Based *ONLY* on the provided 'RAW CANDLE DATA SUMMARY & STATISTICS', identify relevant patterns.
2.  **[CRITICAL] INVESTIGATE THE STRATEGIC ALERT (if present):**
    * ** للتحقق من الاستمرارية (Continuation):** هل الارتفاع مدعوم بـ 'volume_ratio' عالي (موجود في المؤشرات)؟ هل هو اختراق واضح لنمط تجميعي (مثل 'Bull Flag' أو 'Consolidation Breakout')؟ هل الشموع قوية (أجسام كبيرة)؟
    * ** للتحقق من الإرهاق (Exhaustion):** هل ترى 'Bearish Divergence' (السعر يصنع قمة جديدة بينما RSI/MACD لا يفعل)؟ هل يضعف 'volume_ratio' مع الصعود؟ هل تظهر شموع انعكاسية (Doji, Shooting Star) على 4H/1D؟
3.  **INTEGRATE ALL DATA:** ادمج 'تحقيقك' مع باقي البيانات (Learning Hub, Whale Activity).
4.  **DECIDE ACTION (WATCH or HOLD):**
    * **WATCH:** فقط إذا أكد تحقيقك أنها 'Sustainable Continuation' ولديك ثقة عالية (>= 0.75).
    * **HOLD:** إذا أظهر تحقيقك أنها 'Exhaustion Trap'، أو إذا كان الوضع غير واضح ومحفوف بالمخاطر.
5.  **DEFINE STRATEGY:** If (and only if) action is 'WATCH', you MUST specify which strategy the Sentry should use (e.g., 'breakout_momentum', 'mean_reversion').
6.  **SELF-CRITIQUE:** Justify your decision. Why is this strong enough for the Sentry?
7.  **[CRITICAL]** If you recommend 'WATCH', you MUST also provide the *original strategic* stop_loss and take_profit, as the Sentry will use these as hard boundaries.

OUTPUT FORMAT (JSON - SENTRY DECISION):
{{
  "action": "WATCH/HOLD",
  "reasoning": "Detailed explanation integrating ALL data sources. If the Strategic Alert was present, *explicitly state your investigation findings* (e.g., 'I confirmed this is continuation because volume is increasing and a bull flag is forming on 1H...')",
  "pattern_identified_by_llm": "Name of the primary pattern(s) identified (e.g., 'Bull Flag on 1H', 'No Clear Pattern')",
  
  "confidence_level": 0.85,
  "strategy_to_watch": "breakout_momentum",
  
  "stop_loss": 0.000000,
  "take_profit": 0.000000,
  "exit_profile": "ATR_TRAILING",
  "exit_parameters": {{ "atr_multiplier": 2.0, "atr_period": 14, "break_even_trigger_percent": 1.5 }},
  
  "self_critique": {{
      "failure_modes": [
          "What is the first reason this 'WATCH' decision could fail? (e.g., 'The identified pattern is a false breakout.')",
          "What is the second reason? (e.g., 'The Sentry might enter too late.')"
      ],
      "confidence_adjustment_reason": "Brief reason if confidence was adjusted post-critique."
  }}
}}
"""
        return prompt

    def _format_candle_data_comprehensive(self, ohlcv_data):
        if not ohlcv_data: return "No raw candle data available for analysis"
        try:
            timeframes_available = []; total_candles = 0
            for timeframe, candles in ohlcv_data.items():
                if candles and len(candles) >= 5: timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)"); total_candles += len(candles)
            if not timeframes_available: return "Insufficient candle data across all timeframes"
            summary = f"📊 Available Timeframes: {', '.join(timeframes_available)}\n"
            summary += f"📈 Total Candles Available: {total_candles}\n\n"
            raw_candle_analysis_text = self.pattern_engine._format_chart_data_for_llm(ohlcv_data)
            summary += raw_candle_analysis_text
            return summary
        except Exception as e: return f"Error formatting raw candle data: {str(e)}"
        
    def _analyze_timeframe_candles(self, candles, timeframe):
        # (دالة مساعدة - لا تغيير)
        return "" # (تم اختصارها)

    def _format_market_context(self, sentiment_data):
        if not sentiment_data or sentiment_data.get('data_quality', 'LOW') == 'LOW': return "Market context data not available or incomplete."
        btc_sentiment = sentiment_data.get('btc_sentiment', 'N/A'); fear_greed = sentiment_data.get('fear_and_greed_index', 'N/A'); market_trend = sentiment_data.get('market_trend', 'N/A') 
        lines = [f"• Bitcoin Sentiment: {btc_sentiment}", f"• Fear & Greed Index: {fear_greed} ({sentiment_data.get('sentiment_class', 'Neutral')})", f"• Overall Market Trend: {market_trend.replace('_', ' ').title() if isinstance(market_trend, str) else 'N/A'}"]
        general_whale = sentiment_data.get('general_whale_activity', {});
        if general_whale and general_whale.get('sentiment') != 'NEUTRAL': 
             whale_sentiment = general_whale.get('sentiment', 'N/A'); critical_alert = general_whale.get('critical_alert', False)
             lines.append(f"• General Whale Sentiment: {whale_sentiment.replace('_', ' ').title() if isinstance(whale_sentiment, str) else 'N/A'}");
             if critical_alert: lines.append("  ⚠️ CRITICAL WHALE ALERT ACTIVE")
        return "\n".join(lines)


    async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
        try:
            symbol = trade_data['symbol']; original_strategy = trade_data.get('strategy', 'GENERIC')
            ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv')
            if not ohlcv_data: return None
            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            pattern_analysis = await self._get_pattern_analysis(processed_data)
            whale_data = processed_data.get('whale_data', {})

            statistical_feedback = "No statistical learning data yet."
            active_context_playbook = "No active learning rules available."
            if self.learning_hub and self.learning_hub.initialized:
                statistical_feedback = await self.learning_hub.get_statistical_feedback_for_llm(original_strategy)
                active_context_playbook = await self.learning_hub.get_active_context_for_llm(
                    domain="strategy", query=f"{original_strategy} {symbol} re-analysis"
                )

            prompt = self._create_re_analysis_prompt(
                trade_data, processed_data, news_text, pattern_analysis, 
                whale_data, statistical_feedback, active_context_playbook
            )

            if self.r2_service:
                analysis_data = { 'symbol': symbol, 'original_strategy': original_strategy }
                await self.r2_service.save_llm_prompts_async(
                    symbol, 'trade_reanalysis_v5_hub', prompt, analysis_data
                )

            async with self.semaphore:
                response = await self._call_llm(prompt)

            # 🔴 --- START OF CHANGE (V5.4) --- 🔴
            # (تمرير كائن الصفقة الأصلي بالكامل لنسخ القيم القديمة إذا لزم الأمر)
            re_analysis_dict = self._parse_re_analysis_response(response, original_strategy, symbol, trade_data)
            # 🔴 --- END OF CHANGE --- 🔴
            
            if re_analysis_dict:
                re_analysis_dict['model_source'] = self.model_name
                return re_analysis_dict
            else:
                print(f"❌ LLM re-analysis parsing failed for {symbol}")
                return None
        except Exception as e:
            print(f"❌ Error in LLM re-analysis: {e}"); traceback.print_exc()
            return None

    # 🔴 --- START OF CHANGE (V5.4) --- 🔴
    def _parse_re_analysis_response(self, response_text: str, fallback_strategy: str, symbol: str, original_trade: dict) -> dict:
        """(محدث V5.4) يضمن عدم مسح قيم SL/TP أبداً."""
        try:
            json_str = parse_json_from_response(response_text)
            if not json_str: return None
            decision_data = safe_json_parse(json_str)
            if not decision_data: print(f"❌ Failed to parse JSON (safe_json_parse) for re-analysis of {symbol}: {response_text}"); return None

            action = decision_data.get('action')
            if action not in ['HOLD', 'CLOSE_TRADE', 'UPDATE_TRADE']:
                 print(f"⚠️ LLM suggested unsupported re-analysis action ({action}) for {symbol}. Forcing HOLD.")
                 decision_data['action'] = 'HOLD'
            
            # (منطق التحقق الجديد V5.4)
            if action == 'UPDATE_TRADE':
                required_update_fields = ['new_stop_loss', 'new_take_profit', 'new_exit_profile', 'new_exit_parameters']
                if not validate_required_fields(decision_data, required_update_fields):
                    print(f"❌ Missing required fields for UPDATE_TRADE for {symbol}"); decision_data['action'] = 'HOLD' 
                elif not isinstance(decision_data['new_exit_parameters'], dict):
                    print(f"❌ 'new_exit_parameters' is not a valid dict for {symbol}"); decision_data['action'] = 'HOLD'
            
            # (آلية الحماية من المسح)
            if action in ['HOLD', 'UPDATE_TRADE']:
                # التحقق من new_stop_loss
                new_sl = decision_data.get('new_stop_loss')
                if not isinstance(new_sl, (int, float)) or new_sl <= 0:
                    print(f"⚠️ LLM Re-Analysis {symbol}: new_stop_loss is invalid ({new_sl}). Reverting to original SL.")
                    decision_data['new_stop_loss'] = original_trade.get('stop_loss')
                
                # التحقق من new_take_profit
                new_tp = decision_data.get('new_take_profit')
                if not isinstance(new_tp, (int, float)) or new_tp <= 0:
                    print(f"⚠️ LLM Re-Analysis {symbol}: new_take_profit is invalid ({new_tp}). Reverting to original TP.")
                    decision_data['new_take_profit'] = original_trade.get('take_profit')
            
            strategy_value = decision_data.get('strategy')
            if not strategy_value or strategy_value == 'unknown':
                decision_data['strategy'] = fallback_strategy
            
            return decision_data
        except Exception as e:
            print(f"Error parsing re-analysis response for {symbol}: {e}")
            return None
    # 🔴 --- END OF CHANGE --- 🔴

    def _create_re_analysis_prompt(
        self, 
        trade_data: dict, processed_data: dict, news_text: str, 
        pattern_analysis: dict, whale_data: dict, 
        statistical_feedback: str, active_context_playbook: str
    ) -> str:
        
        symbol = trade_data.get('symbol', 'N/A'); entry_price = trade_data.get('entry_price', 'N/A'); current_price = processed_data.get('current_price', 'N/A'); strategy = trade_data.get('strategy', 'GENERIC'); current_exit_profile = trade_data.get('decision_data', {}).get('exit_profile', 'N/A'); current_exit_params = json.dumps(trade_data.get('decision_data', {}).get('exit_parameters', {}))
        
        # 🔴 --- START OF CHANGE (V5.4) --- 🔴
        # (تمرير الأهداف الحالية إلى النموذج)
        current_sl = trade_data.get('stop_loss', 'N/A')
        current_tp = trade_data.get('take_profit', 'N/A')
        # 🔴 --- END OF CHANGE --- 🔴

        statistical_feedback_section = f"🧠 STATISTICAL FEEDBACK (Slow-Learner):\n{statistical_feedback}"; playbook_section = f"📚 LEARNING PLAYBOOK (Fast-Learner Active Rules):\n{active_context_playbook}"
        try: price_change = ((current_price - entry_price) / entry_price) * 100 if entry_price else 0; price_change_display = f"{price_change:+.2f}%"
        except (TypeError, ZeroDivisionError): price_change_display = "N/A"
        
        price_change_24h_raw = processed_data.get('price_change_24h', 0)
        price_change_24h_display = f"{price_change_24h_raw:+.2f}%" if isinstance(price_change_24h_raw, (int, float)) else "N/A"

        indicators_summary = format_technical_indicators(processed_data.get('advanced_indicators', {})); pattern_summary = self._format_pattern_analysis(pattern_analysis) if pattern_analysis else "Pattern analysis data not available for re-analysis."; whale_analysis_section = format_whale_analysis_for_llm(whale_data); market_context_section = self._format_market_context(processed_data.get('sentiment_data', {})); ohlcv_data = processed_data.get('raw_ohlcv') or processed_data.get('ohlcv', {}); candle_data_section = self._format_candle_data_comprehensive(ohlcv_data)

        exhaustion_warning = ""
        try:
            rsi_1d = processed_data.get('advanced_indicators', {}).get('1d', {}).get('rsi', 50)
            if price_change_24h_raw > 40 and rsi_1d > 75:
                exhaustion_warning = (
                    "🚩 **تنبيه استراتيجي: تم رصد زخم مرتفع (احتمال إرهاق)** 🚩\n"
                    f"الأصل مرتفع {price_change_24h_display} خلال 24 ساعة ومؤشر RSI على 1D/4H في منطقة تشبع شرائي.\n"
                    "هذا يزيد من خطورة الاستمرار في الصفقة. قم بالتحقيق في قوة الاتجاه الحالية.\n"
                    "هل بدأ الحجم (Volume) يضعف؟ هل تظهر إشارات انعكاس على 1H/4H؟\n"
                    "------------------------------------------------------------------"
                )
        except Exception:
            pass
            
        # 🔴 --- START OF CHANGE (V5.4) --- 🔴
        prompt = f"""
TRADE RE-ANALYSIS FOR {symbol} (SPOT ONLY - Currently Open LONG Position)

{exhaustion_warning}

📊 CURRENT TRADE CONTEXT:
* Strategy: {strategy}
* Entry Price: {entry_price} (LONG position)
* Current Price: {current_price}
* 24H Price Change: {price_change_24h_display}
* Current Performance: {price_change_display}
* Current Exit Profile: {current_exit_profile}
* CURRENT Stop Loss: {current_sl}
* CURRENT Take Profit: {current_tp}

--- LEARNING HUB INPUT (CRITICAL) ---
{playbook_section}
{statistical_feedback_section}
--- END OF LEARNING INPUT ---

🔄 UPDATED TECHNICAL ANALYSIS:
{indicators_summary}

📈 UPDATED RAW CANDLE DATA SUMMARY & STATISTICS:
{candle_data_section}
{chr(10)}--- END OF CANDLE DATA ---{chr(10)}

🐋 UPDATED WHALE ACTIVITY:
{whale_analysis_section}

🌍 UPDATED MARKET CONTEXT:
{market_context_section if market_context_section and "No market context" not in market_context_section else "Market context data not available for this re-analysis."}

---
🎯 RE-ANALYSIS INSTRUCTIONS (SPOT - LONG POSITION):

1.  **Analyze the Data:** Review all new data (Indicators, Candles, Whale, Market).
2.  **Evaluate Current State:** Is the original reason for entry still valid? Has the risk changed?
3.  **Investigate Alert (if present):** If the 'Exhaustion Alert' is active, determine if the trend is weakening (exit) or just consolidating (hold).
4.  **Decide Action (HOLD, CLOSE_TRADE, or UPDATE_TRADE):**
    * **HOLD:** The trade is still valid. The current strategy/targets are fine.
    * **CLOSE_TRADE:** The trade is invalidated (e.g., trend reversal, risk too high).
    * **UPDATE_TRADE:** The trade is valid, but the exit parameters need adjustment (e.g., raise stop loss to lock profit, or change exit profile).

**[CRITICAL OUTPUT RULES - YOU MUST FOLLOW THESE]:**
1.  You **MUST** return one of three actions: `HOLD`, `CLOSE_TRADE`, or `UPDATE_TRADE`.
2.  If `action` is `HOLD` or `UPDATE_TRADE`, you **MUST** provide valid (non-zero) numeric values for `new_stop_loss` and `new_take_profit`.
3.  **If `action` is `HOLD` and you do not want to change the targets,** you **MUST** return the *CURRENT* values (Current SL: {current_sl}, Current TP: {current_tp}) in the `new_stop_loss` and `new_take_profit` fields.
4.  If `action` is `CLOSE_TRADE`, the values for targets/exit profile are irrelevant.

OUTPUT FORMAT (JSON - SPOT RE-ANALYSIS):
{{
    "action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
    "reasoning": "Comprehensive justification. If 'HOLD' or 'UPDATE', justify the new (or existing) SL/TP values.",
    "new_stop_loss": 0.000000,
    "new_take_profit": 0.000000,
    "new_exit_profile": "The new exit profile (or the existing one if HOLD)",
    "new_exit_parameters": {{ "example_key": "example_value" }},
    "new_expected_minutes": 15,
    "confidence_level": 0.85,
    "strategy": "{strategy}",
    "self_critique": {{
        "failure_modes": ["Primary risk of this new decision?", "Second risk?"],
        "confidence_adjustment_reason": "Brief reason if confidence was adjusted."
    }}
}}
"""
        # 🔴 --- END OF CHANGE --- 🔴
        return prompt
        
    def _format_pattern_analysis(self, pattern_analysis):
        if not pattern_analysis or not pattern_analysis.get('pattern_detected') or pattern_analysis.get('pattern_detected') == 'no_clear_pattern': return "No clear chart pattern detected by the system."
        pattern = pattern_analysis.get('pattern_detected', 'N/A'); confidence = pattern_analysis.get('pattern_confidence', 0); direction = pattern_analysis.get('predicted_direction', 'N/A'); timeframe = pattern_analysis.get('timeframe', 'N/A'); tf_display = f"on {timeframe} timeframe" if timeframe != 'N/A' else ""
        return f"System Pattern Analysis: Detected '{pattern}' {tf_display} with {confidence:.2f} confidence. Predicted direction: {direction}."

    @_rate_limit_nvidia_api
    async def _call_llm(self, prompt: str) -> str:
        try:
            for attempt in range(2): 
                try:
                    response = self.client.chat.completions.create(
                        model=self.model_name,
                        messages=[{"role": "user", "content": prompt}],
                        temperature=self.temperature,
                        seed=int(time.time()), 
                        max_tokens=4000 
                    )
                    
                    content = None
                    if response.choices and response.choices[0].message:
                        content = response.choices[0].message.content
                    
                    if content and '{' in content and '}' in content:
                        return content
                    else:
                        if content is None:
                            print(f"⚠️ LLM returned NO content (None) (attempt {attempt+1}). Check content filters or API status.")
                        else:
                            print(f"⚠️ LLM returned invalid content (not JSON) (attempt {attempt+1}): {content[:100]}...")
                    
                    if attempt == 0: await asyncio.sleep(1) 

                except (RateLimitError, APITimeoutError) as e:
                    print(f"❌ LLM API Error (Rate Limit/Timeout): {e}. Retrying via backoff...")
                    raise 
                except Exception as e:
                    print(f"❌ Unexpected LLM API error (attempt {attempt+1}): {e}")
                    if attempt == 0: await asyncio.sleep(2) 
                    elif attempt == 1: raise 
            
            print("❌ LLM failed to return valid content after retries.")
            return "" 
            
        except Exception as e:
            print(f"❌ Final failure in _call_llm after backoff retries: {e}")
            raise 

print("✅ LLM Service loaded - V5.4 (Fixed Re-Analysis TP/SL Wipe Bug)")