File size: 42,934 Bytes
47eee9f 70c8d92 62df482 70c8d92 33d07ee 6b28865 70c8d92 0ea05ce 33d07ee b5f7cf4 2b81dfa 70c8d92 0ea05ce 70c8d92 0ea05ce 70c8d92 2b81dfa 70c8d92 0ea05ce 70c8d92 0ea05ce 70c8d92 0ea05ce 70c8d92 5442b3b 70c8d92 5b641b7 70c8d92 8a3884f 33d07ee 8a3884f 70c8d92 307847c 70c8d92 0ea05ce 70c8d92 fd02a1f 5442b3b 70c8d92 fd02a1f 70c8d92 fd02a1f 70c8d92 0ea05ce 2b81dfa 62df482 70c8d92 2b81dfa 70c8d92 2b81dfa 70c8d92 2b81dfa 33d07ee 70c8d92 0ea05ce 70c8d92 0ea05ce 70c8d92 0ea05ce 70c8d92 47eee9f 70c8d92 239ef9b 33d07ee 70c8d92 0ea05ce 70c8d92 fd02a1f 70c8d92 33d07ee 70c8d92 0ea05ce 70c8d92 5c68f30 33d07ee 5c68f30 70c8d92 33d07ee 5c68f30 33d07ee 70c8d92 5c68f30 33d07ee 5c68f30 33d07ee 70c8d92 33d07ee 70c8d92 33d07ee 70c8d92 239ef9b 47eee9f 0ea05ce 47eee9f 239ef9b 70c8d92 fd02a1f 0ea05ce fd02a1f 70c8d92 47eee9f 0ea05ce 239ef9b 0ea05ce 239ef9b 0ea05ce 47eee9f 0ea05ce 47eee9f 0ea05ce 47eee9f 0ea05ce 47eee9f 0ea05ce 47eee9f 0ea05ce 239ef9b 0ea05ce 239ef9b 0ea05ce ea5c301 47eee9f ea5c301 47eee9f ea5c301 47eee9f 239ef9b 0ea05ce 70c8d92 b5f7cf4 33d07ee 70c8d92 0ea05ce 70c8d92 33d07ee 70c8d92 b5f7cf4 70c8d92 47eee9f 70c8d92 33d07ee 70c8d92 fd02a1f 307847c 0ea05ce 307847c 70c8d92 47eee9f 70c8d92 33d07ee 37a49fe 33d07ee 70c8d92 0ea05ce 47eee9f 70c8d92 0ea05ce 70c8d92 5442b3b 70c8d92 5442b3b 8695090 5442b3b 8695090 70c8d92 8695090 70c8d92 37a49fe 70c8d92 37a49fe 70c8d92 37a49fe 70c8d92 37a49fe 8695090 5442b3b 8695090 37a49fe 8695090 37a49fe 70c8d92 0ea05ce 70c8d92 1c88744 70c8d92 5442b3b 70c8d92 0ea05ce 70c8d92 5442b3b 70c8d92 2b81dfa 70c8d92 0ea05ce 8a3884f 70c8d92 8a3884f 70c8d92 62df482 70c8d92 5442b3b 64e24d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
# app.py (Fully updated to V8.2 - Statistical VADER Scoring)
import os
import traceback
import signal
import sys
import uvicorn
import asyncio
import json
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from datetime import datetime
from typing import List, Dict, Any
try:
from r2 import R2Service
from LLM import LLMService
from data_manager import DataManager
from ml_engine.processor import MLProcessor
from learning_hub.hub_manager import LearningHubManager
from sentiment_news import SentimentAnalyzer, NewsFetcher # (V8.1) استيراد NewsFetcher
from trade_manager import TradeManager
from ml_engine.monte_carlo import _sanitize_results_for_json
from helpers import safe_float_conversion, validate_candidate_data_enhanced
except ImportError as e:
print(f"❌ خطأ في استيراد الوحدات: {e}")
if "ccxt.async_support" in str(e) or "ccxtpro" in str(e):
print("🚨 خطأ فادح: تأكد من أن 'ccxt' (الإصدار 4+) مثبت وأن 'ccxt-pro' محذوف.")
sys.exit(1)
# (V8.1) استيراد VADER
try:
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
VADER_ANALYZER = SentimentIntensityAnalyzer()
print("✅ تم تحميل VADER Sentiment Analyzer بنجاح")
except ImportError:
print("❌❌ فشل استيراد VADER. درجة الأخبار ستكون معطلة. ❌❌")
print(" قم بتثبيتها باستخدام: pip install vaderSentiment")
VADER_ANALYZER = None
# المتغيرات العالمية
r2_service_global = None
data_manager_global = None
llm_service_global = None
learning_hub_global = None
trade_manager_global = None
sentiment_analyzer_global = None
symbol_whale_monitor_global = None
news_fetcher_global = None # (V8.1) إضافة NewsFetcher
MARKET_STATE_OK = True
class StateManager:
# ... (لا تغيير في هذا الكلاس) ...
def __init__(self):
self.market_analysis_lock = asyncio.Lock()
self.trade_analysis_lock = asyncio.Lock()
self.initialization_complete = False
self.initialization_error = None
self.services_initialized = {
'r2_service': False, 'data_manager': False, 'llm_service': False,
'learning_hub': False, 'trade_manager': False, 'sentiment_analyzer': False,
'symbol_whale_monitor': False, 'news_fetcher': False # (V8.1)
}
async def wait_for_initialization(self, timeout=60):
start_time = time.time()
while not self.initialization_complete and (time.time() - start_time) < timeout:
if self.initialization_error: raise Exception(f"فشل التهيئة: {self.initialization_error}")
await asyncio.sleep(2)
if not self.initialization_complete: raise Exception(f"انتهت مهلة التهيئة ({timeout} ثانية)")
return self.initialization_complete
def set_service_initialized(self, service_name):
self.services_initialized[service_name] = True
if all(self.services_initialized.values()):
self.initialization_complete = True
print("🎯 جميع الخدمات مهيأة بالكامل")
def set_initialization_error(self, error):
self.initialization_error = error
print(f"❌ خطأ في التهيئة: {error}")
state_manager = StateManager()
async def initialize_services():
"""تهيئة جميع الخدمات بشكل منفصل"""
global r2_service_global, data_manager_global, llm_service_global
global learning_hub_global, trade_manager_global, sentiment_analyzer_global
global symbol_whale_monitor_global, news_fetcher_global # (V8.1)
try:
# 🔴 --- START OF CHANGE (V7.0) --- 🔴
print("🚀 بدء تهيئة الخدمات (بنية Sentry الجديدة V5.9)...")
# 🔴 --- END OF CHANGE --- 🔴
print(" 🔄 تهيئة R2Service..."); r2_service_global = R2Service(); state_manager.set_service_initialized('r2_service'); print(" ✅ R2Service مهيأة")
print(" 🔄 جلب قاعدة بيانات العقود..."); contracts_database = await r2_service_global.load_contracts_db_async(); print(f" ✅ تم تحميل {len(contracts_database)} عقد")
print(" 🔄 تهيئة مراقب الحيتان (Layer 1 Data)...");
try:
from whale_monitor.core import EnhancedWhaleMonitor
symbol_whale_monitor_global = EnhancedWhaleMonitor(contracts_database, r2_service_global)
state_manager.set_service_initialized('symbol_whale_monitor'); print(" ✅ مراقب الحيتان مهيأ")
except Exception as e:
print(f" ⚠️ فشل تهيئة مراقب الحيتان: {e}");
traceback.print_exc()
symbol_whale_monitor_global = None
state_manager.set_service_initialized('symbol_whale_monitor');
print(" ℹ️ مراقبة الحيتان معطلة. استمرار التهيئة...")
# (V8-MODIFICATION) تمرير r2_service_global إلى DataManager
print(" 🔄 تهيئة DataManager (Layer 1 Data)...");
data_manager_global = DataManager(contracts_database, symbol_whale_monitor_global, r2_service_global)
await data_manager_global.initialize();
state_manager.set_service_initialized('data_manager');
print(" ✅ DataManager مهيأ (ومحرك الأنماط V8 مُحمّل)")
print(" 🔄 تهيئة LLMService (Layer 1 Brain)...");
llm_service_global = LLMService();
llm_service_global.r2_service = r2_service_global;
print(" 🔄 تهيئة محلل المشاعر (Layer 1 Data)...");
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global);
state_manager.set_service_initialized('sentiment_analyzer');
print(" ✅ محلل المشاعر مهيأ")
# (V8.1) تهيئة NewsFetcher
print(" 🔄 تهيئة NewsFetcher (Layer 1 Data)...");
news_fetcher_global = NewsFetcher()
state_manager.set_service_initialized('news_fetcher');
print(" ✅ NewsFetcher (V8.1) مهيأ")
# (تمرير NewsFetcher إلى LLMService - مهم لإعادة التحليل)
llm_service_global.news_fetcher = news_fetcher_global
print(" 🔄 تهيئة محور التعلم (Hub)...");
learning_hub_global = LearningHubManager(
r2_service=r2_service_global,
llm_service=llm_service_global,
data_manager=data_manager_global
)
await learning_hub_global.initialize()
state_manager.set_service_initialized('learning_hub');
print(" ✅ محور التعلم (Hub) مهيأ")
llm_service_global.learning_hub = learning_hub_global
state_manager.set_service_initialized('llm_service');
print(" ✅ LLMService مربوط بمحور التعلم")
print(" 🔄 تهيئة مدير الصفقات (Layer 2 Sentry + Layer 3 Executor)...");
# (تمرير دالة الدورة كـ "رد نداء" ليتم استدعاؤها بعد إغلاق الصفقة)
trade_manager_global = TradeManager(
r2_service=r2_service_global,
learning_hub=learning_hub_global,
data_manager=data_manager_global,
state_manager=state_manager,
callback_on_close=run_bot_cycle_async
)
await trade_manager_global.initialize_sentry_exchanges()
state_manager.set_service_initialized('trade_manager');
print(" ✅ مدير الصفقات (Sentry/Executor) مهيأ")
print("🎯 اكتملت تهيئة جميع الخدمات بنجاح"); return True
except Exception as e: error_msg = f"فشل تهيئة الخدمات: {str(e)}"; print(f"❌ {error_msg}"); state_manager.set_initialization_error(error_msg); return False
async def monitor_market_async():
# ... (لا تغيير في هذه الدالة) ...
global data_manager_global, sentiment_analyzer_global, MARKET_STATE_OK
try:
if not await state_manager.wait_for_initialization(): print("❌ فشل تهيئة الخدمات - إيقاف مراقبة السوق"); return
while True:
try:
async with state_manager.market_analysis_lock:
market_context = await sentiment_analyzer_global.get_market_sentiment()
if not market_context: MARKET_STATE_OK = True; await asyncio.sleep(60); continue
bitcoin_sentiment = market_context.get('btc_sentiment')
fear_greed_index = market_context.get('fear_and_greed_index')
should_halt_trading, halt_reason = False, ""
if bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30): should_halt_trading, halt_reason = True, "ظروف سوق هابطة"
if should_halt_trading:
MARKET_STATE_OK = False;
await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason})
else:
if not MARKET_STATE_OK: print("✅ تحسنت ظروف السوق. استئناف العمليات العادية.")
MARKET_STATE_OK = True
await asyncio.sleep(60)
except Exception as error:
print(f"❌ خطأ أثناء مراقبة السوق: {error}");
MARKET_STATE_OK = True;
await asyncio.sleep(60)
except Exception as e: print(f"❌ فشل تشغيل مراقبة السوق: {e}")
async def run_periodic_distillation():
# ... (لا تغيير في هذه الدالة) ...
print("background task: Periodic Distillation (Curator) scheduled.")
await asyncio.sleep(300)
while True:
try:
if not await state_manager.wait_for_initialization():
await asyncio.sleep(60)
continue
print("🔄 [Scheduler] Running periodic distillation check...")
await learning_hub_global.run_distillation_check()
await asyncio.sleep(6 * 60 * 60)
except Exception as e:
print(f"❌ [Scheduler] Error in periodic distillation task: {e}")
traceback.print_exc()
await asyncio.sleep(60 * 60)
async def process_batch_parallel(batch, ml_processor, batch_num, total_batches, preloaded_whale_data):
# ... (لا تغيير في هذه الدالة) ...
try:
batch_tasks = []
for symbol_data in batch:
task = asyncio.create_task(ml_processor.process_multiple_symbols_parallel([symbol_data], preloaded_whale_data))
batch_tasks.append(task)
batch_results_list_of_lists = await asyncio.gather(*batch_tasks, return_exceptions=True)
successful_results = []
low_score_results = []
failed_results = []
for i, result_list in enumerate(batch_results_list_of_lists):
symbol = batch[i].get('symbol', 'unknown')
if isinstance(result_list, Exception):
failed_results.append({"symbol": symbol, "error": f"Task Execution Error: {str(result_list)}"})
continue
if result_list:
result = result_list[0]
if isinstance(result, dict):
if result.get('enhanced_final_score', 0) > 0.4:
successful_results.append(result)
else:
low_score_results.append(result)
else:
failed_results.append({"symbol": symbol, "error": f"ML processor returned invalid type: {type(result)}"})
else:
failed_results.append({"symbol": symbol, "error": "ML processing returned None or empty list"})
return {'success': successful_results, 'low_score': low_score_results, 'failures': failed_results}
except Exception as error:
print(f"❌ [Consumer] Error processing batch {batch_num}: {error}")
return {'success': [], 'low_score': [], 'failures': []}
async def run_3_layer_analysis_explorer() -> List[Dict[str, Any]]:
"""
(معدل V8.2) - استخدام درجة الأخبار الإحصائية
"""
layer1_candidates = []
layer2_candidates = []
final_layer2_candidates = []
watchlist_candidates = []
preloaded_whale_data_dict = {}
try:
print("🎯 Starting Explorer Analysis (Layer 1)...")
if not await state_manager.wait_for_initialization():
print("❌ Services not fully initialized (Explorer)"); return []
# (V8.1) التأكد من تهيئة VADER و NewsFetcher
if not VADER_ANALYZER or not news_fetcher_global:
print("❌ VADER or NewsFetcher not initialized! News analysis will be skipped.")
print("\n🔍 Layer 1.1: Rapid Screening (data_manager V7.3)...")
layer1_candidates = await data_manager_global.layer1_rapid_screening()
if not layer1_candidates: print("❌ No candidates found in Layer 1.1"); return []
print(f"✅ Selected {len(layer1_candidates)} symbols for Layer 1.2")
print(f"\n📊 Layer 1.2: Fetching OHLCV data for {len(layer1_candidates)} symbols (Streaming)...")
DATA_QUEUE_MAX_SIZE = 2
ohlcv_data_queue = asyncio.Queue(maxsize=DATA_QUEUE_MAX_SIZE)
ml_results_list = []
market_context = await data_manager_global.get_market_context_async()
ml_processor = MLProcessor(market_context, data_manager_global, learning_hub_global)
batch_size = 15
total_batches = (len(layer1_candidates) + batch_size - 1) // batch_size
async def ml_consumer_task(queue: asyncio.Queue, results_list: list, whale_data_store: dict):
# ... (لا تغيير في هذه الدالة الداخلية) ...
batch_num = 0
while True:
try:
batch_data = await queue.get()
if batch_data is None:
queue.task_done()
break
batch_num += 1
batch_results_dict = await process_batch_parallel(
batch_data, ml_processor, batch_num, total_batches, whale_data_store
)
results_list.append(batch_results_dict)
queue.task_done()
except Exception as e:
print(f"❌ [ML Consumer] Fatal Error: {e}");
traceback.print_exc();
queue.task_done()
consumer_task = asyncio.create_task(ml_consumer_task(ohlcv_data_queue, ml_results_list, preloaded_whale_data_dict))
producer_task = asyncio.create_task(data_manager_global.stream_ohlcv_data(layer1_candidates, ohlcv_data_queue))
await producer_task;
await ohlcv_data_queue.join()
await consumer_task;
print("🔄 Aggregating all ML (Layer 1.3) results...")
for batch_result in ml_results_list:
for success_item in batch_result['success']:
symbol = success_item['symbol']
l1_data = success_item
if l1_data:
success_item['reasons_for_candidacy'] = l1_data.get('reasons_for_candidacy', [])
success_item['layer1_score'] = l1_data.get('layer1_score', 0)
success_item['whale_data'] = {'data_available': False, 'reason': 'Not fetched yet'}
# (V8.2) إضافة قيم افتراضية للأخبار
success_item['news_text'] = ""
success_item['news_score_raw'] = 0.0 # درجة VADER الخام
success_item['statistical_news_pnl'] = 0.0 # الدرجة المتعلمة
layer2_candidates.append(success_item)
if not layer2_candidates: print("❌ No candidates found in Layer 1.3"); return []
layer2_candidates.sort(key=lambda x: x.get('enhanced_final_score', 0), reverse=True)
# (V8.1) نأخذ أفضل 10 هنا (بدلاً من 5) لإضافة الحيتان والأخبار
target_count = min(10, len(layer2_candidates))
final_layer2_candidates = layer2_candidates[:target_count]
# 🔴 --- START OF CHANGE (V8.2) --- 🔴
print(f"\n🐋📰 Layer 1.4 (Optimized): Fetching Whale Data & News for top {len(final_layer2_candidates)} candidates...")
# (دالة مساعدة لجلب الحيتان)
async def get_whale_data_for_candidate(candidate):
symbol = candidate.get('symbol', 'UNKNOWN')
try:
data = await data_manager_global.get_whale_data_for_symbol(symbol)
if data:
candidate['whale_data'] = data
else:
candidate['whale_data'] = {'data_available': False, 'reason': 'No data returned'}
except Exception as e:
print(f" ❌ [Whale Fetch] {symbol} - Error: {e}")
candidate['whale_data'] = {'data_available': False, 'error': str(e)}
# (دالة مساعدة لجلب الأخبار وتحليل VADER)
async def get_news_data_for_candidate(candidate):
symbol = candidate.get('symbol', 'UNKNOWN')
if not news_fetcher_global or not VADER_ANALYZER:
candidate['news_text'] = "News analysis disabled."
candidate['news_score_raw'] = 0.0
return
try:
# 1. جلب نص الأخبار (باستخدام NewsFetcher المطور)
news_text = await news_fetcher_global.get_news_for_symbol(symbol)
candidate['news_text'] = news_text
# 2. حساب درجة VADER الخام
if "No specific news found" in news_text or not news_text:
candidate['news_score_raw'] = 0.0 # محايد
else:
vader_score = VADER_ANALYZER.polarity_scores(news_text)
candidate['news_score_raw'] = vader_score.get('compound', 0.0) # النتيجة (-1 إلى +1)
except Exception as e:
print(f" ❌ [News Fetch] {symbol} - Error: {e}")
candidate['news_text'] = f"Error fetching news: {e}"
candidate['news_score_raw'] = 0.0
# (تنفيذ المهام بالتوازي)
tasks = []
for candidate in final_layer2_candidates:
tasks.append(asyncio.create_task(get_whale_data_for_candidate(candidate)))
tasks.append(asyncio.create_task(get_news_data_for_candidate(candidate)))
await asyncio.gather(*tasks)
print(" ✅ Whale data and News data fetched for top candidates.")
print(" 🔄 Re-calculating enhanced scores with new Whale & Statistical News data...")
for candidate in final_layer2_candidates:
try:
# (V8.2) جلب درجة VADER الخام
raw_vader_score = candidate.get('news_score_raw', 0.0)
# (V8.2) جلب الربح/الخسارة الإحصائي المرتبط بهذه الدرجة من محور التعلم
if learning_hub_global:
statistical_pnl = await learning_hub_global.get_statistical_news_score(raw_vader_score)
candidate['statistical_news_pnl'] = statistical_pnl
else:
candidate['statistical_news_pnl'] = 0.0 # (الوضع الآمن)
# (هذه الدالة في processor.py تم تعديلها لتقبل statistical_news_pnl)
new_score = ml_processor._calculate_enhanced_final_score(candidate)
candidate['enhanced_final_score'] = new_score
except Exception as e:
print(f" ❌ [Score Recalc] {candidate.get('symbol')} - Error: {e}")
final_layer2_candidates.sort(key=lambda x: x.get('enhanced_final_score', 0), reverse=True)
print(" ✅ Top scores updated (with Stat. News + Whale) and re-sorted.")
# 🔴 --- END OF CHANGE (V8.2) --- 🔴
print(f"\n🔬 Layer 1.5: Running Advanced MC (GARCH+LGBM) on top {len(final_layer2_candidates)} candidates...")
advanced_mc_analyzer = ml_processor.monte_carlo_analyzer
updated_candidates_for_llm = []
for candidate in final_layer2_candidates:
symbol = candidate.get('symbol', 'UNKNOWN')
try:
advanced_mc_results = await advanced_mc_analyzer.generate_1h_distribution_advanced(
candidate.get('ohlcv')
)
if advanced_mc_results and advanced_mc_results.get('simulation_model') == 'Phase2_GARCH_LGBM':
candidate['monte_carlo_distribution'] = advanced_mc_results
candidate['monte_carlo_probability'] = advanced_mc_results.get('probability_of_gain', 0)
candidate['advanced_mc_run'] = True
else:
candidate['advanced_mc_run'] = False
updated_candidates_for_llm.append(candidate)
except Exception as e:
print(f" ❌ [Advanced MC] {symbol} - Error: {e}. Using Phase 1 results.")
candidate['advanced_mc_run'] = False
updated_candidates_for_llm.append(candidate)
print(" 🔄 Sanitizing final candidates for JSON serialization...")
sanitized_candidates = []
for cand in updated_candidates_for_llm:
sanitized_candidates.append(_sanitize_results_for_json(cand))
final_layer2_candidates = sanitized_candidates
await r2_service_global.save_candidates_async(final_layer2_candidates)
print("\n🧠 Layer 1.6: LLM Strategic Analysis (Explorer Brain)...")
# (V8.1) نختار أفضل 5 الآن *بعد* اكتمال كل التحليلات (حيتان + أخبار + MC متقدم)
top_5_for_llm = final_layer2_candidates[:5]
print(f" (Sending Top {len(top_5_for_llm)} candidates to LLM)")
for candidate in top_5_for_llm:
try:
symbol = candidate['symbol']
ohlcv_data = candidate.get('ohlcv');
if not ohlcv_data: continue
candidate['raw_ohlcv'] = ohlcv_data
total_candles = sum(len(data) for data in ohlcv_data.values()) if ohlcv_data else 0
if total_candles < 30: continue
candidate['sentiment_data'] = await data_manager_global.get_market_context_async()
# (V8.2) النموذج الضخم سيحصل على 'news_text' (النص الخام)
# ولن يرى 'statistical_news_pnl' (الدرجة المتعلمة)
llm_analysis = await llm_service_global.get_trading_decision(candidate)
if llm_analysis and llm_analysis.get('action') in ['WATCH']:
strategy_to_watch = llm_analysis.get('strategy_to_watch', 'GENERIC')
confidence = llm_analysis.get('confidence_level', 0)
watchlist_entry = {
'symbol': symbol,
'strategy_hint': strategy_to_watch,
'explorer_score': candidate.get('enhanced_final_score', 0),
'llm_confidence': confidence,
'analysis_timestamp': datetime.now().isoformat(),
'llm_decision_context': {
'decision': llm_analysis,
'full_candidate_data': candidate
}
}
watchlist_candidates.append(watchlist_entry)
print(f" ✅ {symbol}: Added to Sentry Watchlist (Strategy: {strategy_to_watch} | Conf: {confidence:.2f})")
else:
action = llm_analysis.get('action', 'NO_DECISION') if llm_analysis else 'NO_RESPONSE';
print(f" ⚠️ {symbol}: Not recommended by LLM for watching ({action})")
except Exception as e: print(f"❌ Error in LLM analysis for {candidate.get('symbol')}: {e}"); traceback.print_exc(); continue
if watchlist_candidates:
watchlist_candidates.sort(key=lambda x: (x['llm_confidence'] + x['explorer_score']) / 2, reverse=True)
if not watchlist_candidates:
print("❌ Explorer analysis complete: No suitable candidates for Sentry Watchlist.")
return []
top_watchlist = watchlist_candidates
# --- (V8-MODIFICATION) إنشاء وحفظ سجل التدقيق ---
print("📊 إنشاء سجل تدقيق لمحرك الأنماط V8...")
audit_log = {
"log_id": f"audit_{int(datetime.now().timestamp())}",
"timestamp": datetime.now().isoformat(),
"model_key": "lgbm_pattern_model_combined.pkl", # (من النموذج الناجح)
"scaler_key": "scaler_combined.pkl", # (من النموذج الناجH)
"model_accuracy": 0.5870, # (من ملف evaluation_results.txt)
"predictions": []
}
# (اجمع كل التوقعات التي حدثت في هذه الدورة)
for candidate in final_layer2_candidates: # (استخدام المرشحين النهائيين)
pattern_analysis = candidate.get('pattern_analysis', {})
audit_entry = {
"symbol": candidate.get('symbol', 'N/A'),
"timeframe": pattern_analysis.get('timeframe', 'N/A'),
"pattern_detected": pattern_analysis.get('pattern_detected', 'N/A'),
"confidence": pattern_analysis.get('pattern_confidence', 0),
"predicted_direction": pattern_analysis.get('predicted_direction', 'neutral'),
"error": "None" # (نفترض عدم وجود خطأ، وإلا لما كان مرشحاً)
}
audit_log["predictions"].append(audit_entry)
# (حفظ السجل في R2)
if r2_service_global:
await r2_service_global.save_analysis_audit_log_async(audit_log)
# --- (نهاية الإضافة) ---
print(f"✅ Explorer analysis complete. Sending {len(top_watchlist)} candidates to Sentry.")
return top_watchlist
except Exception as error:
print(f"❌ Fatal error in Explorer (Layer 1) system: {error}"); traceback.print_exc()
return []
async def re_analyze_open_trade_async(trade_data):
"""(V8.2) إضافة جلب الأخبار ودرجة VADER لـ Reflector"""
symbol = trade_data.get('symbol')
try:
async with state_manager.trade_analysis_lock:
print(f"🔄 [Re-Analyze] Starting strategic analysis for {symbol}...")
market_context = await data_manager_global.get_market_context_async()
ohlcv_data_list = []
temp_queue = asyncio.Queue()
await data_manager_global.stream_ohlcv_data(
[{'symbol': symbol, 'layer1_score': 0, 'reasons_for_candidacy': ['re-analysis']}],
temp_queue
)
while True:
try:
batch = await asyncio.wait_for(temp_queue.get(), timeout=1.0)
if batch is None: temp_queue.task_done(); break
ohlcv_data_list.extend(batch)
temp_queue.task_done()
except asyncio.TimeoutError:
if temp_queue.empty(): break
except Exception: break
if not ohlcv_data_list: print(f"⚠️ Failed to get re-analysis data for {symbol}"); return None
ohlcv_data = ohlcv_data_list[0]
re_analysis_whale_data = await data_manager_global.get_whale_data_for_symbol(symbol)
ml_processor = MLProcessor(market_context, data_manager_global, learning_hub_global)
print(f"🔄 [Re-Analyze] Using Advanced MC (Phase 2+3) for {symbol}...")
advanced_mc_results = await ml_processor.monte_carlo_analyzer.generate_1h_distribution_advanced(
ohlcv_data.get('ohlcv')
)
processed_data = await ml_processor.process_and_score_symbol_enhanced(ohlcv_data, {symbol: re_analysis_whale_data} if re_analysis_whale_data else {})
if not processed_data: return None
if advanced_mc_results:
processed_data['monte_carlo_distribution'] = advanced_mc_results
processed_data['monte_carlo_probability'] = advanced_mc_results.get('probability_of_gain', 0)
processed_data['raw_ohlcv'] = ohlcv_data.get('raw_ohlcv') or ohlcv_data.get('ohlcv')
processed_data['ohlcv'] = processed_data['raw_ohlcv']
processed_data['sentiment_data'] = market_context
# 🔴 --- START OF CHANGE (V8.2) --- 🔴
# (جلب الأخبار ودرجة VADER الخام لتمريرها إلى Reflector لاحقاً)
if news_fetcher_global and VADER_ANALYZER:
try:
news_text = await news_fetcher_global.get_news_for_symbol(symbol)
processed_data['news_text'] = news_text
vader_score = VADER_ANALYZER.polarity_scores(news_text)
processed_data['news_score'] = vader_score.get('compound', 0.0)
except Exception as e:
print(f" ❌ [Re-Analyze News] {symbol} - Error: {e}")
processed_data['news_text'] = "News analysis failed."
processed_data['news_score'] = 0.0
else:
processed_data['news_text'] = "News analysis disabled."
processed_data['news_score'] = 0.0
# 🔴 --- END OF CHANGE --- 🔴
# (LLMService سيستخدم NewsFetcher الخاص به لجلب أحدث الأخبار لتحليلها)
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
if re_analysis_decision:
await r2_service_global.save_system_logs_async({ "trade_reanalyzed": True, "symbol": symbol, "action": re_analysis_decision.get('action'), 'strategy': re_analysis_decision.get('strategy', 'GENERIC') })
print(f"✅ [Re-Analyze] Strategic analysis complete for {symbol}. Decision: {re_analysis_decision.get('action')}")
return {"symbol": symbol, "decision": re_analysis_decision, "current_price": processed_data.get('current_price')}
else: return None
except Exception as error: await r2_service_global.save_system_logs_async({ "reanalysis_error": True, "symbol": symbol, "error": str(error) }); print(f"❌ Error in re_analyze_open_trade_async for {symbol}: {error}"); traceback.print_exc(); return None
async def run_bot_cycle_async():
# ... (لا تغيير في هذه الدالة) ...
"""
(محدث V5.9) - دورة البوت الرئيسية (المستكشف)
"""
try:
if not await state_manager.wait_for_initialization():
print("❌ Services not fully initialized - skipping cycle"); return
# 🔴 --- START OF CHANGE (V6.9) --- 🔴
# (إضافة: تأخير بسيط لضمان تحرير القفل من الدورة السابقة)
await asyncio.sleep(1.0)
# 🔴 --- END OF CHANGE --- 🔴
print("🔄 Starting Explorer cycle (Layer 1)...");
await r2_service_global.save_system_logs_async({"explorer_cycle_started": True})
if not r2_service_global.acquire_lock():
print("❌ Failed to acquire lock - skipping cycle (another cycle likely running)"); return
open_trades = []
try:
open_trades = await trade_manager_global.get_open_trades();
print(f"📋 Open trades: {len(open_trades)}")
if open_trades:
now = datetime.now()
trades_to_reanalyze = [t for t in open_trades if now >= datetime.fromisoformat(t.get('expected_target_time', now.isoformat()))]
if trades_to_reanalyze:
print(f"🔄 (Explorer) Re-analyzing {len(trades_to_reanalyze)} trades strategically...")
reanalysis_results = await asyncio.gather(*[re_analyze_open_trade_async(trade) for trade in trades_to_reanalyze], return_exceptions=True)
for i, result in enumerate(reanalysis_results):
trade = trades_to_reanalyze[i]
if isinstance(result, Exception):
print(f" ❌ Re-analysis failed for {trade.get('symbol')}: {result}")
elif result and result['decision'].get('action') == "UPDATE_TRADE":
print(f" ✅ (Explorer) Updating strategy for {trade.get('symbol')}.");
await trade_manager_global.update_trade_strategy(trade, result['decision'])
elif result and result['decision'].get('action') == "HOLD":
print(f" ℹ️ (Explorer) Holding {trade.get('symbol')}. Resetting 15-min timer.")
await trade_manager_global.update_trade_strategy(trade, result['decision'])
elif result and result['decision'].get('action') == "CLOSE_TRADE":
print(f" 🛑 (Explorer) LLM Re-analysis ordered CLOSE_TRADE for {trade.get('symbol')}. Executing...")
await trade_manager_global.immediate_close_trade(
trade.get('symbol'),
result['current_price'],
f"Strategic Exit: LLM Re-analysis ({result['decision'].get('reasoning', 'N/A')[:50]}...)"
)
elif result:
print(f" ℹ️ (Explorer) Re-analysis returned unhandled action '{result['decision'].get('action')}' for {trade.get('symbol')}.")
else:
print(f" ⚠️ Re-analysis for {trade.get('symbol')} yielded no decision.")
current_open_trades_count = len(await trade_manager_global.get_open_trades())
should_look_for_new_trade = current_open_trades_count == 0
if should_look_for_new_trade:
portfolio_state = await r2_service_global.get_portfolio_state_async();
current_capital = portfolio_state.get("current_capital_usd", 0)
if current_capital > 1:
print("🎯 (Explorer) Looking for new trading opportunities...")
sentry_watchlist = await run_3_layer_analysis_explorer()
if sentry_watchlist:
print(f"✅ (Explorer) Found {len(sentry_watchlist)} candidates. Sending to Sentry (Layer 2)...")
await trade_manager_global.update_sentry_watchlist(sentry_watchlist)
else:
print("❌ (Explorer) No suitable trading opportunities found for Sentry.")
await trade_manager_global.update_sentry_watchlist([])
else:
print("❌ Insufficient capital to open new trades")
else:
print("ℹ️ A trade is already open, skipping new trade search.")
await trade_manager_global.update_sentry_watchlist([])
finally:
if r2_service_global.lock_acquired: r2_service_global.release_lock()
await r2_service_global.save_system_logs_async({ "explorer_cycle_completed": True, "open_trades": len(open_trades)})
print("✅ Explorer cycle complete")
except Exception as error:
print(f"❌ Unhandled error in main cycle: {error}"); traceback.print_exc()
await r2_service_global.save_system_logs_async({ "cycle_error": True, "error": str(error) });
if r2_service_global and r2_service_global.lock_acquired: r2_service_global.release_lock()
@asynccontextmanager
async def lifespan(application: FastAPI):
# ... (لا تغيير في هذه الدالة) ...
"""Application lifecycle management"""
print("🚀 Starting application initialization (Explorer/Sentry/Executor)...")
try:
success = await initialize_services()
if not success: print("❌ Application initialization failed - shutting down..."); yield; return
asyncio.create_task(monitor_market_async())
asyncio.create_task(trade_manager_global.start_sentry_and_monitoring_loops())
asyncio.create_task(run_periodic_distillation())
await r2_service_global.save_system_logs_async({"application_started": True})
print("🎯 Application ready - Explorer-Sentry-Executor Architecture is active")
print(" -> 📈 Sentry (Layer 2) & Executor (Layer 3) are active")
print(" -> 🧠 Periodic Distillation (Curator) is scheduled")
yield
except Exception as error:
print(f"❌ Application startup failed: {error}");
traceback.print_exc()
if r2_service_global:
await r2_service_global.save_system_logs_async({ "application_startup_failed": True, "error": str(error) })
raise
finally:
await cleanup_on_shutdown()
application = FastAPI(lifespan=lifespan, title="AI Trading Bot", description="Explorer-Sentry-Executor Architecture (V5.9)", version="5.9.0")
@application.get("/")
# ... (لا تغيير في نقاط النهاية (Endpoints)) ...
async def root(): return {"message": "Welcome to the AI Trading System", "system": "Explorer-Sentry-Executor", "status": "running" if state_manager.initialization_complete else "initializing", "timestamp": datetime.now().isoformat()}
@application.get("/run-cycle")
async def run_cycle_api():
if not state_manager.initialization_complete: raise HTTPException(status_code=503, detail="Services not fully initialized")
asyncio.create_task(run_bot_cycle_async())
return {"message": "Explorer (Layer 1) cycle initiated", "system": "Explorer-Sentry-Executor"}
@application.get("/health")
async def health_check(): return {"status": "healthy" if state_manager.initialization_complete else "initializing", "initialization_complete": state_manager.initialization_complete, "services_initialized": state_manager.services_initialized, "initialization_error": state_manager.initialization_error, "timestamp": datetime.now().isoformat(), "system_architecture": "Explorer-Sentry-Executor (V5.9)"}
@application.get("/analyze-market")
async def analyze_market_api():
if not state_manager.initialization_complete: raise HTTPException(status_code=503, detail="Services not fully initialized")
result = await run_3_layer_analysis_explorer()
if result: return {"watchlist_generated": True, "count": len(result), "top_candidate": result[0]}
else: return {"watchlist_generated": False, "message": "No suitable candidates found for Sentry"}
@application.get("/portfolio")
async def get_portfolio_api():
if not state_manager.initialization_complete: raise HTTPException(status_code=503, detail="Services not fully initialized")
try: portfolio_state = await r2_service_global.get_portfolio_state_async(); open_trades = await trade_manager_global.get_open_trades(); return {"portfolio": portfolio_state, "open_trades": open_trades, "timestamp": datetime.now().isoformat()}
except Exception as e: raise HTTPException(status_code=500, detail=f"Error getting portfolio: {str(e)}")
@application.get("/system-status")
async def get_system_status():
monitoring_status = trade_manager_global.get_sentry_status() if trade_manager_global else {};
return {"initialization_complete": state_manager.initialization_complete, "services_initialized": state_manager.services_initialized, "initialization_error": state_manager.initialization_error, "market_state_ok": MARKET_STATE_OK, "sentry_status": monitoring_status, "timestamp": datetime.now().isoformat()}
async def cleanup_on_shutdown():
# ... (لا تغيير في هذه الدالة) ...
global r2_service_global, data_manager_global, trade_manager_global, learning_hub_global, symbol_whale_monitor_global
print("🛑 Shutdown signal received. Cleaning up...")
if trade_manager_global:
await trade_manager_global.stop_sentry_loops()
print("✅ Sentry/Executor loops stopped")
if learning_hub_global and learning_hub_global.initialized:
try:
await learning_hub_global.shutdown()
print("✅ Learning hub data saved")
except Exception as e: print(f"❌ Failed to save learning hub data: {e}")
if symbol_whale_monitor_global:
try:
await symbol_whale_monitor_global.cleanup()
print("✅ Whale monitor cleanup complete.")
except Exception as e:
print(f"❌ Failed to cleanup whale monitor: {e}")
if data_manager_global: await data_manager_global.close(); print("✅ Data manager closed")
if r2_service_global:
try: await r2_service_global.save_system_logs_async({"application_shutdown": True}); print("✅ Shutdown log saved")
except Exception as e: print(f"❌ Failed to save shutdown log: {e}")
if r2_service_global.lock_acquired: r2_service_global.release_lock(); print("✅ R2 lock released")
def signal_handler(signum, frame): print(f"🛑 Received signal {signum}. Initiating shutdown..."); asyncio.create_task(cleanup_on_shutdown()); sys.exit(0)
signal.signal(signal.SIGINT, signal_handler); signal.signal(signal.SIGTERM, signal_handler)
if __name__ == "__main__":
print("🚀 Starting AI Trading Bot (Explorer-Sentry-Executor V5.9)...")
uvicorn.run( application, host="0.0.0.0", port=7860, log_level="info", access_log=True ) |