File size: 33,757 Bytes
6c7250f
00bb5c9
 
 
 
 
 
79a9e95
d69dead
28fa18b
394e2c7
164b380
 
 
 
 
 
 
11b4dc5
 
 
6b00681
11b4dc5
53cf6c0
28fa18b
 
53cf6c0
 
6b00681
 
53cf6c0
d2775f3
6b00681
c6f72fe
 
 
 
56e3f87
af73eb9
248e033
c6f72fe
79a9e95
c6f72fe
dceb75a
c6f72fe
 
87e3669
56e3f87
 
11b4dc5
 
 
6b00681
d69dead
53cf6c0
248e033
56e3f87
6b00681
 
 
 
 
 
 
 
 
 
 
 
6c7250f
24a0949
56e3f87
 
 
 
 
dceb75a
7985470
56e3f87
 
dceb75a
56e3f87
 
dceb75a
56e3f87
53cf6c0
b866e29
ea38153
b866e29
 
 
 
 
 
 
 
164b380
24a0949
d69dead
248e033
 
24a0949
 
 
 
 
 
 
 
 
 
 
 
 
 
d69dead
24a0949
56e3f87
d69dead
24a0949
d69dead
24a0949
d69dead
248e033
24a0949
d69dead
56e3f87
 
24a0949
396f10a
87e3669
24a0949
 
 
 
 
 
87e3669
24a0949
 
87e3669
24a0949
 
 
11b4dc5
 
 
248e033
 
11b4dc5
 
 
 
 
ed04390
ea38153
11b4dc5
 
 
 
ea38153
 
 
c6f72fe
ea38153
 
248e033
ea38153
 
 
c6f72fe
11b4dc5
ea38153
c6f72fe
7985470
248e033
11b4dc5
7985470
248e033
11b4dc5
c6f72fe
ea38153
 
 
 
 
248e033
ea38153
11b4dc5
eb48a52
248e033
eb48a52
 
 
ea38153
 
 
 
 
 
56e3f87
 
ea38153
 
 
87e3669
 
 
 
ea38153
87e3669
24a0949
53cf6c0
 
164b380
11b4dc5
3fd2d9a
11b4dc5
 
 
 
 
 
 
 
 
 
 
 
6c7250f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b4dc5
 
6c7250f
 
 
 
 
 
 
11b4dc5
 
6c7250f
 
 
 
 
 
 
 
 
 
 
11b4dc5
6c7250f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b4dc5
6c7250f
11b4dc5
6c7250f
 
 
 
11b4dc5
6c7250f
 
11b4dc5
6c7250f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b4dc5
6c7250f
11b4dc5
 
6c7250f
11b4dc5
6c7250f
11b4dc5
 
24a0949
 
6714a95
24a0949
6c7250f
79a9e95
164b380
11b4dc5
79a9e95
b44825a
 
 
164b380
79a9e95
 
 
164b380
79a9e95
6c7250f
79a9e95
164b380
79a9e95
164b380
 
 
 
 
 
 
 
 
11b4dc5
164b380
11b4dc5
 
 
 
164b380
 
 
11b4dc5
164b380
 
11b4dc5
3fd2d9a
 
11b4dc5
 
 
 
 
 
 
 
 
3fd2d9a
11b4dc5
 
 
 
164b380
 
3fd2d9a
 
 
6c7250f
11b4dc5
164b380
6c7250f
6714a95
11b4dc5
 
6c7250f
11b4dc5
 
 
164b380
 
6c7250f
164b380
 
 
11b4dc5
7985470
11b4dc5
24a0949
79a9e95
 
11b4dc5
3fd2d9a
11b4dc5
 
 
 
 
 
164b380
11b4dc5
164b380
11b4dc5
 
6b00681
11b4dc5
 
 
 
3fd2d9a
11b4dc5
 
 
 
 
164b380
11b4dc5
164b380
 
11b4dc5
3fd2d9a
164b380
11b4dc5
164b380
3fd2d9a
11b4dc5
 
164b380
11b4dc5
164b380
b44825a
 
11b4dc5
7985470
b44825a
 
11b4dc5
79a9e95
b44825a
11b4dc5
f253a62
b44825a
 
 
11b4dc5
b44825a
11b4dc5
3fd2d9a
 
11b4dc5
3fd2d9a
79a9e95
11b4dc5
 
f253a62
79a9e95
11b4dc5
b44825a
 
c10d7f8
b44825a
 
 
 
 
 
 
 
 
11b4dc5
b44825a
 
 
 
11b4dc5
b44825a
 
f253a62
 
 
 
11b4dc5
f253a62
 
 
 
 
7985470
11b4dc5
 
7985470
 
11b4dc5
164b380
b44825a
 
c10d7f8
b44825a
 
3fd2d9a
5663c09
3fd2d9a
164b380
5663c09
164b380
24a0949
113d926
dc2c23a
 
113d926
dc2c23a
 
113d926
dc2c23a
 
 
6714a95
3fd2d9a
6714a95
3fd2d9a
 
 
dc2c23a
 
113d926
dc2c23a
 
3fd2d9a
 
 
 
dc2c23a
3fd2d9a
dc2c23a
3fd2d9a
113d926
dc2c23a
307f514
3fd2d9a
248e033
3fd2d9a
113d926
 
 
 
 
 
 
 
 
 
 
dc2c23a
113d926
24a0949
164b380
f16cd30
 
 
 
 
 
113d926
6598c39
dc2c23a
3fd2d9a
7f28923
 
248e033
7f28923
11b4dc5
 
7f28923
 
dc2c23a
 
08e895c
dc2c23a
 
 
 
08e895c
164b380
248e033
dc2c23a
 
11b4dc5
6b00681
 
dc2c23a
08e895c
7f28923
6b00681
 
afa0eeb
7aab55a
231c23d
 
 
 
 
11b4dc5
 
231c23d
60b8fa4
11b4dc5
 
08e895c
 
afa0eeb
60b8fa4
11b4dc5
 
 
7f28923
08e895c
3fd2d9a
08e895c
 
 
 
7985470
08e895c
 
 
 
 
 
 
 
 
dc2c23a
6598c39
3fd2d9a
6598c39
11b4dc5
 
7985470
11b4dc5
116ef05
11b4dc5
231c23d
11b4dc5
56e3f87
20a2029
 
 
 
 
11b4dc5
 
20a2029
 
 
 
 
 
11b4dc5
20a2029
11b4dc5
20a2029
6c7250f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# data_manager.py (Updated to V7.4 - 1H Momentum Burst Filter)
import os
import asyncio
import httpx
import traceback
import time
from datetime import datetime
import ccxt
import numpy as np
import logging
from typing import List, Dict, Any
import pandas as pd

try:
    import pandas_ta as ta
except ImportError:
    print("⚠️ مكتبة pandas_ta غير موجودة، فلتر الغربلة المتقدم سيفشل.")
    ta = None

from ml_engine.indicators import AdvancedTechnicalAnalyzer
from ml_engine.monte_carlo import MonteCarloAnalyzer
# (V8-MODIFICATION) استيراد المحرك الصحيح (V8)
from ml_engine.patterns import ChartPatternAnalyzer

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)

class DataManager:
    # (V8-MODIFICATION) قبول r2_service
    def __init__(self, contracts_db, whale_monitor, r2_service=None):
        self.contracts_db = contracts_db or {}
        self.whale_monitor = whale_monitor
        self.r2_service = r2_service # (V8-MODIFICATION) الإضافة الجديدة
        
        try:
            self.exchange = ccxt.kucoin({
                'sandbox': False,
                'enableRateLimit': True,
                'timeout': 30000,
                'verbose': False,
            })
            print("✅ تم تهيئة اتصال KuCoin بنجاح")
        except Exception as e:
            print(f"❌ فشل تهيئة اتصال KuCoin: {e}")
            self.exchange = None
            
        self.http_client = None
        self.market_cache = {}
        self.last_market_load = None

        self.technical_analyzer = AdvancedTechnicalAnalyzer()
        self.monte_carlo_analyzer = MonteCarloAnalyzer()
        self.pattern_analyzer = None # (V8-MODIFICATION) سيتم تهيئته في initialize
        
    async def initialize(self):
        self.http_client = httpx.AsyncClient(timeout=30.0)
        await self._load_markets()
        
        # (V8-MODIFICATION) تهيئة محرك الأنماط V8 (ML-Based)
        print("   > [DataManager] تهيئة محرك الأنماط V8 (ML-Based)...")
        try:
            self.pattern_analyzer = ChartPatternAnalyzer(r2_service=self.r2_service)
            await self.pattern_analyzer.initialize() # (تحميل النموذج والمقياس من R2)
        except Exception as e:
            print(f"❌ [DataManager] فشل تهيئة محرك الأنماط V8: {e}")
            # (العودة للوضع الآمن إذا فشل التحميل)
            self.pattern_analyzer = ChartPatternAnalyzer(r2_service=None)
        # --- (نهاية الإضافة) ---

        print("✅ DataManager initialized - V7.4 (1H Momentum Burst Filter)")

    async def _load_markets(self):
        try:
            if not self.exchange:
                return
                
            print("🔄 جلب أحدث بيانات الأسواق من KuCoin...")
            self.exchange.load_markets()
            self.market_cache = self.exchange.markets
            self.last_market_load = datetime.now()
            print(f"✅ تم تحميل {len(self.market_cache)} سوق من KuCoin")
            
        except Exception as e:
            print(f"❌ فشل تحميل بيانات الأسواق: {e}")

    async def close(self):
        if self.http_client and not self.http_client.is_closed: 
            await self.http_client.aclose()
            print("   ✅ DataManager: http_client closed.")
            
        if self.exchange:
            try:
                await self.exchange.close()
                print("   ✅ DataManager: ccxt.kucoin exchange closed.")
            except Exception as e:
                print(f"   ⚠️ DataManager: Error closing ccxt.kucoin: {e}")
        
    async def get_market_context_async(self):
        try:
            sentiment_data = await self.get_sentiment_safe_async()
            price_data = await self._get_prices_with_fallback()
            
            bitcoin_price = price_data.get('bitcoin')
            ethereum_price = price_data.get('ethereum')
            
            market_context = {
                'timestamp': datetime.now().isoformat(),
                'bitcoin_price_usd': bitcoin_price,
                'ethereum_price_usd': ethereum_price,
                'fear_and_greed_index': sentiment_data.get('feargreed_value') if sentiment_data else None,
                'sentiment_class': sentiment_data.get('feargreed_class') if sentiment_data else 'NEUTRAL',
                'market_trend': self._determine_market_trend(bitcoin_price, sentiment_data),
                'btc_sentiment': self._get_btc_sentiment(bitcoin_price),
                'data_quality': 'HIGH' if bitcoin_price and ethereum_price else 'LOW'
            }
            
            return market_context
                
        except Exception as e:
            return self._get_minimal_market_context()

    async def get_sentiment_safe_async(self):
        try:
            async with httpx.AsyncClient(timeout=10) as client:
                response = await client.get("https://api.alternative.me/fng/")
                response.raise_for_status()
                data = response.json()
                
                if 'data' not in data or not data['data']:
                    raise ValueError("بيانات المشاعر غير متوفرة")
                
                latest_data = data['data'][0]
                return {
                    "feargreed_value": int(latest_data['value']), 
                    "feargreed_class": latest_data['value_classification'],
                    "source": "alternative.me",
                    "timestamp": datetime.now().isoformat()
                }
        except Exception as e:
            return None

    def _determine_market_trend(self, bitcoin_price, sentiment_data):
        if bitcoin_price is None:
            return "UNKNOWN"
        if bitcoin_price > 60000: score = 1
        elif bitcoin_price < 55000: score = -1
        else: score = 0
        if sentiment_data and sentiment_data.get('feargreed_value') is not None:
            fear_greed = sentiment_data.get('feargreed_value')
            if fear_greed > 60: score += 1
            elif fear_greed < 40: score -= 1
        if score >= 1: return "bull_market"
        elif score <= -1: return "bear_market"
        else: return "sideways_market"

    def _get_btc_sentiment(self, bitcoin_price):
        if bitcoin_price is None: return 'UNKNOWN'
        elif bitcoin_price > 60000: return 'BULLISH'
        elif bitcoin_price < 55000: return 'BEARISH'
        else: return 'NEUTRAL'

    async def _get_prices_with_fallback(self):
        try:
            prices = await self._get_prices_from_kucoin_safe()
            if prices.get('bitcoin') and prices.get('ethereum'):
                return prices
            return await self._get_prices_from_coingecko()
        except Exception as e:
            return {'bitcoin': None, 'ethereum': None}

    async def _get_prices_from_kucoin_safe(self):
        if not self.exchange: return {'bitcoin': None, 'ethereum': None}
        try:
            prices = {'bitcoin': None, 'ethereum': None}
            btc_ticker = self.exchange.fetch_ticker('BTC/USDT')
            btc_price = float(btc_ticker.get('last', 0)) if btc_ticker.get('last') else None
            if btc_price and btc_price > 0: prices['bitcoin'] = btc_price
            eth_ticker = self.exchange.fetch_ticker('ETH/USDT')
            eth_price = float(eth_ticker.get('last', 0)) if eth_ticker.get('last') else None
            if eth_price and eth_price > 0: prices['ethereum'] = eth_price
            return prices
        except Exception as e:
            return {'bitcoin': None, 'ethereum': None}

    async def _get_prices_from_coingecko(self):
        try:
            await asyncio.sleep(0.5)
            url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin,ethereum&vs_currencies=usd"
            headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36', 'Accept': 'application/json'}
            async with httpx.AsyncClient(headers=headers) as client:
                response = await client.get(url, timeout=10)
                if response.status_code == 429:
                    await asyncio.sleep(2)
                    response = await client.get(url, timeout=10)
                response.raise_for_status()
                data = response.json()
                btc_price = data.get('bitcoin', {}).get('usd')
                eth_price = data.get('ethereum', {}).get('usd')
                if btc_price and eth_price:
                    return {'bitcoin': btc_price, 'ethereum': eth_price}
                else:
                    return {'bitcoin': None, 'ethereum': None}
        except Exception as e:
            return {'bitcoin': None, 'ethereum': None}

    def _get_minimal_market_context(self):
        return {
            'timestamp': datetime.now().isoformat(),
            'data_available': False,
            'market_trend': 'UNKNOWN',
            'btc_sentiment': 'UNKNOWN',
            'data_quality': 'LOW'
        }

    
    def _create_dataframe(self, candles: List) -> pd.DataFrame:
        """(V7.1) دالة مساعدة لإنشاء DataFrame لتحليل 1H"""
        try:
            if not candles: return pd.DataFrame()
            df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
            df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
            df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
            df.set_index('timestamp', inplace=True)
            df.sort_index(inplace=True)
            return df
        except Exception as e:
            print(f"❌ خطأ في إنشاء DataFrame لمرشح 1H: {e}")
            return pd.DataFrame()

    # 🔴 --- START OF CHANGE (V7.4) --- 🔴
    # (دالة مساعدة جديدة لتقسيم منطق MC)
    def _get_mc_score_for_filter(self, analysis: Dict) -> float:
        """(V7.4) (دالة مساعدة) لحساب درجة مونت كارلو للفلتر"""
        mc_distribution = analysis.get('monte_carlo_distribution')
        monte_carlo_score = 0
        
        if mc_distribution and mc_distribution.get('error') is None: 
            prob_gain = mc_distribution.get('probability_of_gain', 0)
            var_95_value = mc_distribution.get('risk_metrics', {}).get('VaR_95_value', 0)
            current_price = analysis.get('current_price', 1)
            
            if current_price > 0:
                normalized_var = var_95_value / current_price
                risk_penalty = 1.0
                if normalized_var > 0.05: risk_penalty = 0.5           
                elif normalized_var > 0.03: risk_penalty = 0.8
                
                normalized_prob_score = max(0.0, (prob_gain - 0.5) * 2)
                monte_carlo_score = normalized_prob_score * risk_penalty
        return monte_carlo_score

    def _calculate_1h_filter_score(self, analysis: Dict) -> float:
        """
        (محدث V7.4 - فلتر الزخم المتفجر 1H)
        "فلتر شمس منتصف الظهر"
        يبحث عن:
        1. انفجار الحجم (Volume Explosion)
        2. قوة الاتجاه (Trend Strength - ADX)
        3. المنطقة الآمنة (RSI Safe Zone)
        4. (يحتوي على واقي العملات المستقرة V7.2)
        """
        try:
            # (V7.2) واقي العملات المستقرة (لا تغيير)
            ohlcv_candles = analysis.get('ohlcv_1h', {}).get('1h', [])
            if not ohlcv_candles or len(ohlcv_candles) < 30: # (تحتاج 30 لـ ADX و Vol MA)
                return 0.0 

            closes_1h = [c[4] for c in ohlcv_candles]
            if len(closes_1h) > 20: # (التحقق من العملة المستقرة أولاً)
                std_dev = np.std(closes_1h[-20:])
                if std_dev < 1e-5: 
                    # print(f"      - {analysis.get('symbol', 'N/A')}: تم الاستبعاد (عملة مستقرة)")
                    return 0.0 
            
            # --- (الإضافة الجديدة: حساب المؤشرات المتقدمة للفلتر) ---
            if ta is None: # (التحقق من pandas_ta)
                return 0.0 # لا يمكن الحساب بدون المكتبة

            df = self._create_dataframe(ohlcv_candles) # (إعادة إنشاء DF لحساب ADX/Vol)
            if df.empty:
                return 0.0

            # 1. حساب مؤشرات الزخم المتفجر
            volume = df['volume']
            vol_ma = ta.sma(volume, length=20)
            if vol_ma is None or vol_ma.empty: return 0.0

            current_volume = volume.iloc[-1]
            avg_volume = vol_ma.iloc[-1]

            adx_data = ta.adx(df['high'], df['low'], df['close'], length=14)
            current_adx = adx_data['ADX_14'].iloc[-1] if adx_data is not None and not adx_data.empty else 0
            
            # 2. جلب المؤشرات الأساسية (المحسوبة مسبقاً)
            indicators = analysis.get('advanced_indicators', {}).get('1h', {})
            rsi = indicators.get('rsi', 50)
            
            # 3. جلب درجة مونت كارلو (المحسوبة مسبقاً)
            monte_carlo_score = self._get_mc_score_for_filter(analysis)
            
            # 4. جلب درجة الأنماط (المحسوبة مسبقاً)
            pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0)

            # --- (منطق الفلترة الجديد) ---
            
            # المعايير الصارمة لـ "شمس منتصف الظهر"
            VOL_MULTIPLIER = 1.75  # (يجب أن يكون الحجم الحالي 1.75x المتوسط)
            ADX_THRESHOLD = 25.0   # (يجب أن يكون الاتجاه قوياً)
            RSI_MIN = 60           # (يجب أن يكون في منطقة صاعدة)
            RSI_MAX = 85           # (يجب ألا يكون منهكاً تماماً)

            vol_score = 0.0
            if avg_volume > 0:
                # (تطبيع درجة الحجم: 1.0 إذا كان يساوي أو يفوق المضاعف)
                vol_score = min(1.0, max(0.0, (current_volume / avg_volume) / VOL_MULTIPLIER))
            
            # (تطبيع درجة ADX: 0.0 عند 25، و 1.0 عند 40+)
            adx_score = min(1.0, max(0.0, (current_adx - ADX_THRESHOLD) / 15.0)) 
            
            rsi_score = 0.0
            if RSI_MIN <= rsi <= RSI_MAX:
                rsi_score = 1.0
            elif rsi > RSI_MAX: # (عقوبة بسيطة للإرهاق)
                rsi_score = 0.5 

            # (الأوزان الجديدة) - إعطاء الأولوية للزخم والحجم
            WEIGHT_VOL = 0.30
            WEIGHT_ADX = 0.30
            WEIGHT_RSI = 0.15
            WEIGHT_MC = 0.15
            WEIGHT_PATTERN = 0.10 # (تقليل أهمية النمط أثناء الانفجار)

            final_score = (
                (vol_score * WEIGHT_VOL) +
                (adx_score * WEIGHT_ADX) +
                (rsi_score * WEIGHT_RSI) +
                (monte_carlo_score * WEIGHT_MC) +
                (pattern_confidence * WEIGHT_PATTERN)
            )
            
            # (العتبة (Threshold) لا تزال 0.50 كما هي في V7.3)
            
            return min(max(final_score, 0.0), 1.0)
            
        except Exception as e:
            # print(f"❌ خطأ في حساب درجة فلتر 1H (V-Burst): {e}")
            return 0.0
    # 🔴 --- END OF CHANGE --- 🔴


    async def layer1_rapid_screening(self) -> List[Dict[str, Any]]:
        """
        الطبقة 1: فحص سريع - (محدث بالكامل V7.3)
        """
        print("📊 الطبقة 1 (V7.4): بدء الغربلة (الكاشف المتفجر 1H)...")
        
        # الخطوة 1: جلب أفضل 100 عملة حسب الحجم
        volume_data = await self._get_volume_data_optimal()
        if not volume_data:
            volume_data = await self._get_volume_data_direct_api()
        
        if not volume_data:
            print("❌ فشل جلب بيانات الأحجام للطبقة 1")
            return []
        
        volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True)
        top_100_by_volume = volume_data[:100]
        
        print(f"✅ تم تحديد أفضل {len(top_100_by_volume)} عملة. بدء تشغيل الكاشف المتفجر (1H)...")
        
        final_candidates = []
        
        batch_size = 20
        for i in range(0, len(top_100_by_volume), batch_size):
            batch_symbols_data = top_100_by_volume[i:i + batch_size]
            batch_symbols = [s['symbol'] for s in batch_symbols_data]
            
            print(f"   🔄 معالجة دفعة {int(i/batch_size) + 1}/{(len(top_100_by_volume) + batch_size - 1) // batch_size} ({len(batch_symbols)} عملة)...")
            
            # الخطوة 2: جلب بيانات 1H بالتوازي
            tasks = [self._fetch_1h_ohlcv_for_screening(symbol) for symbol in batch_symbols]
            results_candles = await asyncio.gather(*tasks, return_exceptions=True)
            
            analysis_tasks = []
            valid_symbol_data = []

            for j, (candles) in enumerate(results_candles):
                symbol_data = batch_symbols_data[j]
                symbol = symbol_data['symbol']

                if isinstance(candles, Exception) or not candles or len(candles) < 50:
                    continue
                
                ohlcv_1h_only = {'1h': candles}
                symbol_data['ohlcv_1h'] = ohlcv_1h_only 
                symbol_data['current_price'] = candles[-1][4]
                analysis_tasks.append(self._run_mini_detector(symbol_data))
                valid_symbol_data.append(symbol_data)

            if not analysis_tasks:
                continue
                
            analysis_results = await asyncio.gather(*analysis_tasks, return_exceptions=True)

            for j, (analysis_output) in enumerate(analysis_results):
                symbol_data = valid_symbol_data[j]
                symbol = symbol_data['symbol']

                if isinstance(analysis_output, Exception):
                    print(f"      - {symbol}: فشل الكاشف المصغر ({analysis_output})")
                    continue
                
                analysis_output['ohlcv_1h'] = symbol_data['ohlcv_1h']
                analysis_output['symbol'] = symbol
                
                # (استدعاء الدالة الجديدة V7.4)
                filter_score = self._calculate_1h_filter_score(analysis_output)
                
                # (لا تغيير في العتبة، V7.3)
                if filter_score >= 0.50:
                    print(f"      ✅ {symbol}: نجح (الدرجة: {filter_score:.2f})")
                    symbol_data['layer1_score'] = filter_score
                    symbol_data['reasons_for_candidacy'] = [f'1H_MOMENTUM_BURST']
                    
                    if 'ohlcv_1h' in symbol_data: del symbol_data['ohlcv_1h'] 
                    
                    final_candidates.append(symbol_data)

        print(f"🎯 اكتملت الغربلة (V7.4). تم تأهيل {len(final_candidates)} عملة من أصل 100 للطبقة 2.")
        
        print("🏆 المرشحون الناجحون:")
        for k, candidate in enumerate(final_candidates[:15]):
            score = candidate.get('layer1_score', 0)
            volume = candidate.get('dollar_volume', 0)
            print(f"   {k+1:2d}. {candidate['symbol']}: (الدرجة: {score:.2f}) | ${volume:,.0f}")
        
        return final_candidates

    async def _run_mini_detector(self, symbol_data: Dict) -> Dict:
        """(V7.1) يشغل المحللات الأساسية بالتوازي على بيانات 1H فقط"""
        ohlcv_1h = symbol_data.get('ohlcv_1h')
        current_price = symbol_data.get('current_price')
        
        df = self._create_dataframe(ohlcv_1h.get('1h'))
        if df.empty:
            raise ValueError("DataFrame فارغ لتحليل 1H")
            
        analysis_dict = {'current_price': current_price}

        task_indicators = self.technical_analyzer.calculate_all_indicators(df, '1h')
        task_mc = self.monte_carlo_analyzer.generate_1h_price_distribution(ohlcv_1h)
        # (V8-MODIFICATION) استخدام الدالة الجديدة
        task_pattern = self.pattern_analyzer.detect_chart_patterns(ohlcv_1h)

        results = await asyncio.gather(task_mc, task_pattern, return_exceptions=True)
        
        analysis_dict['advanced_indicators'] = {'1h': task_indicators}
        
        if not isinstance(results[0], Exception):
            analysis_dict['monte_carlo_distribution'] = results[0]
        if not isinstance(results[1], Exception):
            analysis_dict['pattern_analysis'] = results[1]
            
        return analysis_dict


    async def _fetch_1h_ohlcv_for_screening(self, symbol: str) -> List:
        """(V7.1) جلب 100 شمعة لإطار الساعة (1H) للغربلة السريعة"""
        try:
            ohlcv_data = self.exchange.fetch_ohlcv(symbol, '1h', limit=100)
            
            if not ohlcv_data or len(ohlcv_data) < 50:
                return None
            return ohlcv_data
        except Exception:
            return None

    async def _get_volume_data_optimal(self) -> List[Dict[str, Any]]:
        try:
            if not self.exchange: return []
            tickers = self.exchange.fetch_tickers()
            volume_data = []
            for symbol, ticker in tickers.items():
                if not symbol.endswith('/USDT') or not ticker.get('active', True): continue
                current_price = ticker.get('last', 0)
                quote_volume = ticker.get('quoteVolume', 0)
                if current_price is None or current_price <= 0: continue
                if quote_volume is not None and quote_volume > 0:
                    dollar_volume = quote_volume
                else:
                    base_volume = ticker.get('baseVolume', 0)
                    if base_volume is None: continue
                    dollar_volume = base_volume * current_price
                if dollar_volume is None or dollar_volume < 50000: continue
                
                price_change_24h = ticker.get('percentage', 0) or 0
                if price_change_24h is None: price_change_24h = 0

                volume_data.append({
                    'symbol': symbol, 'dollar_volume': dollar_volume,
                    'current_price': current_price, 'volume_24h': ticker.get('baseVolume', 0) or 0,
                    'price_change_24h': price_change_24h
                })
            print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المثلى (لجلب الحجم)")
            return volume_data
        except Exception as e:
            print(f"❌ خطأ في جلب بيانات الحجم المثلى: {e}")
            return []

    async def _get_volume_data_direct_api(self) -> List[Dict[str, Any]]:
        try:
            url = "https://api.kucoin.com/api/v1/market/allTickers"
            async with httpx.AsyncClient(timeout=15) as client:
                response = await client.get(url)
                response.raise_for_status()
                data = response.json()
                if data.get('code') != '200000': raise ValueError(f"استجابة API غير متوقعة: {data.get('code')}")
                tickers = data['data']['ticker']
                volume_data = []
                for ticker in tickers:
                    symbol = ticker['symbol']
                    if not symbol.endswith('USDT'): continue
                    formatted_symbol = symbol.replace('-', '/')
                    try:
                        vol_value = ticker.get('volValue')
                        last_price = ticker.get('last')
                        change_rate = ticker.get('changeRate')
                        vol = ticker.get('vol')
                        if vol_value is None or last_price is None or change_rate is None or vol is None: continue
                        dollar_volume = float(vol_value) if vol_value else 0
                        current_price = float(last_price) if last_price else 0
                        price_change = (float(change_rate) * 100) if change_rate else 0
                        volume_24h = float(vol) if vol else 0
                        if dollar_volume >= 50000 and current_price > 0:
                            volume_data.append({
                                'symbol': formatted_symbol, 'dollar_volume': dollar_volume,
                                'current_price': current_price, 'volume_24h': volume_24h,
                                'price_change_24h': price_change
                            })
                    except (ValueError, TypeError, KeyError) as e: continue
                print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المباشرة (لجلب الحجم)")
                return volume_data
        except Exception as e:
            print(f"❌ خطأ في جلب بيانات الحجم المباشر: {e}")
            return []

    async def stream_ohlcv_data(self, symbols: List[Dict[str, Any]], queue: asyncio.Queue):
        """
        (محدث V7.2)
        جلب بيانات OHLCV كاملة (6 أطر زمنية) للعملات الناجحة فقط
        """
        print(f"📊 بدء تدفق بيانات OHLCV (الكاملة) لـ {len(symbols)} عملة (الناجحين من الغربلة)...")
        
        batch_size = 15
        batches = [symbols[i:i + batch_size] for i in range(0, len(symbols), batch_size)]
        
        total_successful = 0
        
        for batch_num, batch in enumerate(batches):
            print(f"   🔄 [المنتج] جلب الدفعة {batch_num + 1}/{len(batches)} ({len(batch)} عملة)...")
            
            batch_tasks = []
            
            # (V7.2 FIX)
            for symbol_data in batch:
                symbol_str = symbol_data['symbol'] 
                task = asyncio.create_task(self._fetch_complete_ohlcv_parallel(symbol_str))
                batch_tasks.append(task)

            batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True)
            
            successful_data_for_batch = []
            successful_count = 0
            for i, result in enumerate(batch_results):
                
                original_symbol_data = batch[i]
                symbol_str = original_symbol_data['symbol']

                if isinstance(result, Exception):
                    print(f"      ❌ [المنتج] فشل جلب {symbol_str}: {result}")
                elif result is not None:
                    result.update(original_symbol_data) 
                    successful_data_for_batch.append(result)
                    successful_count += 1
                    timeframes_count = result.get('successful_timeframes', 0)
                    print(f"      ✅ [المنتج] {symbol_str}: {timeframes_count}/6 أطر زمنية")
                else:
                    print(f"      ⚠️ [المنتج] {symbol_str}: بيانات غير كافية، تم التجاهل")

            print(f"      📦 [المنتج] اكتملت الدفعة {batch_num + 1}: {successful_count}/{len(batch)} ناجحة")
            
            if successful_data_for_batch:
                try:
                    await queue.put(successful_data_for_batch)
                    print(f"      📬 [المنتج] تم إرسال {len(successful_data_for_batch)} عملة إلى طابور المعالجة")
                    total_successful += len(successful_data_for_batch)
                except Exception as q_err:
                    print(f"      ❌ [المنتج] فشل إرسال الدفعة للطابور: {q_err}")

            if batch_num < len(batches) - 1:
                await asyncio.sleep(1)
        
        print(f"✅ [المنتج] اكتمل تدفق بيانات OHLCV (الكاملة). تم إرسال {total_successful} عملة للمعالجة.")
        
        try:
            await queue.put(None)
            print("      📬 [المنتج] تم إرسال إشارة الإنهاء (None) إلى الطابور.")
        except Exception as q_err:
            print(f"      ❌ [المنتج] فشل إرسال إشارة الإنهاء (None) للطابور: {q_err}")


    async def _fetch_complete_ohlcv_parallel(self, symbol: str) -> Dict[str, Any]:
        """(V7.2) جلب بيانات OHLCV كاملة - يتوقع 'symbol' كنص"""
        try:
            ohlcv_data = {}
            
            timeframes = [
                ('5m', 200), ('15m', 200), ('1h', 200),
                ('4h', 200), ('1d', 200), ('1w', 200),
            ]
            
            timeframe_tasks = []
            for timeframe, limit in timeframes:
                task = asyncio.create_task(self._fetch_single_timeframe_improved(symbol, timeframe, limit))
                timeframe_tasks.append(task)
            
            timeframe_results = await asyncio.gather(*timeframe_tasks, return_exceptions=True)
            
            successful_timeframes = 0
            min_required_timeframes = 2
            
            for i, (timeframe, limit) in enumerate(timeframes):
                result = timeframe_results[i]
                if isinstance(result, Exception): continue
                # (V8-MODIFICATION) زيادة الحد الأدنى من الشموع لاستيعاب المؤشرات
                if result and len(result) >= 200: # (كان 10)
                    ohlcv_data[timeframe] = result
                    successful_timeframes += 1
            
            # (V8-MODIFICATION) زيادة الحد الأدنى للأطر الزمنية
            if successful_timeframes >= 3 and ohlcv_data: # (كان 2)
                try:
                    current_price = await self.get_latest_price_async(symbol)
                    if current_price is None:
                        for timeframe_data in ohlcv_data.values():
                            if timeframe_data and len(timeframe_data) > 0:
                                last_candle = timeframe_data[-1]
                                if len(last_candle) >= 5:
                                    current_price = last_candle[4]; break
                    if current_price is None: return None
                    
                    result_data = {
                        'symbol': symbol, 'ohlcv': ohlcv_data, 'raw_ohlcv': ohlcv_data,
                        'current_price': current_price, 'timestamp': datetime.now().isoformat(),
                        'candles_count': {tf: len(data) for tf, data in ohlcv_data.items()},
                        'successful_timeframes': successful_timeframes
                    }
                    return result_data
                except Exception as price_error: return None
            else: return None
        except Exception as e: return None

    async def _fetch_single_timeframe_improved(self, symbol: str, timeframe: str, limit: int):
        """(V7.2) جلب بيانات إطار زمني واحد - يتوقع 'symbol' كنص"""
        max_retries = 3
        retry_delay = 2
        for attempt in range(max_retries):
            try:
                ohlcv_data = self.exchange.fetch_ohlcv(symbol, timeframe, limit=limit)
                if ohlcv_data and len(ohlcv_data) > 0:
                    return ohlcv_data
                else:
                    return []
            except Exception as e:
                if attempt < max_retries - 1:
                    await asyncio.sleep(retry_delay * (attempt + 1))
                else:
                    return []

    async def get_latest_price_async(self, symbol):
        """(V7.2) جلب السعر الحالي - يتوقع 'symbol' كنص"""
        try:
            if not self.exchange: return None
            if not symbol or '/' not in symbol: return None
            ticker = self.exchange.fetch_ticker(symbol)
            if not ticker: return None
            current_price = ticker.get('last')
            if current_price is None: return None
            return float(current_price)
        except Exception as e: return None

    async def get_whale_data_for_symbol(self, symbol):
        try:
            if self.whale_monitor:
                whale_data = await self.whale_monitor.get_symbol_whale_activity(symbol)
                return whale_data
            else: return None
        except Exception as e: return None

    async def get_whale_trading_signal(self, symbol, whale_data, market_context):
        try:
            if self.whale_monitor:
                return await self.whale_monitor.generate_whale_trading_signal(symbol, whale_data, market_context)
            else:
                return {'action': 'HOLD', 'confidence': 0.3, 'reason': 'Whale monitor not available', 'source': 'whale_analysis'}
        except Exception as e:
            return {'action': 'HOLD', 'confidence': 0.3, 'reason': f'Error: {str(e)}', 'source': 'whale_analysis'}

print("✅ DataManager loaded - V7.4 (1H Momentum Burst Filter)")