File size: 23,338 Bytes
56b50dd c0d1d16 413ec05 c0d1d16 413ec05 4871cfe 413ec05 4871cfe 413ec05 4871cfe 413ec05 4871cfe 413ec05 4871cfe 0f7f748 4871cfe 0f7f748 4871cfe 0f7f748 4871cfe 0f7f748 cf52831 4871cfe cf52831 0f7f748 cf52831 0f7f748 cf52831 0f7f748 4871cfe 0f7f748 4871cfe 1cab813 c0d1d16 56b50dd c0d1d16 1cab813 cf52831 1cab813 cf52831 1cab813 cf52831 1cab813 cf52831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# helpers.py
import os, re, json, hashlib
from datetime import datetime
import pandas as pd
import numpy as np
def safe_float_conversion(value, default=0.0):
try:
if value is None: return default
if isinstance(value, (int, float)): return float(value)
if isinstance(value, str):
cleaned = ''.join(c for c in value if c.isdigit() or c in '.-')
return float(cleaned) if cleaned else default
return default
except (ValueError, TypeError): return default
def _apply_patience_logic(decision, hold_minutes, trade_data, processed_data):
action = decision.get('action')
if action == "CLOSE_TRADE" and hold_minutes < 20:
current_price = processed_data.get('current_price', 0)
entry_price = trade_data.get('entry_price', 0)
try: profit_loss_percent = ((current_price - entry_price) / entry_price) * 100
except (TypeError, ZeroDivisionError): profit_loss_percent = 0
if profit_loss_percent < 2:
decision.update({
'action': "HOLD",
'reasoning': f"Patience Filter: Blocked premature sell. Held for {hold_minutes:.1f}m. Giving trade more time."
})
return decision
def parse_json_from_response(response_text: str):
try:
json_match = re.search(r'```json\n(.*?)\n```', response_text, re.DOTALL)
if json_match: return json_match.group(1).strip()
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match: return json_match.group()
return None
except Exception: return None
def validate_required_fields(data_dict: dict, required_fields: list) -> bool:
return all(field in data_dict for field in required_fields)
def format_technical_indicators(advanced_indicators):
"""تنسيق جميع المؤشرات الفنية بشكل شامل للنموذج الضخم"""
if not advanced_indicators: return "No data for advanced indicators."
summary = []
for timeframe, indicators in advanced_indicators.items():
if indicators:
parts = []
# مؤشرات الاتجاه
if 'ema_9' in indicators: parts.append(f"EMA9: {indicators['ema_9']:.6f}")
if 'ema_21' in indicators: parts.append(f"EMA21: {indicators['ema_21']:.6f}")
if 'ema_50' in indicators: parts.append(f"EMA50: {indicators['ema_50']:.6f}")
if 'ema_200' in indicators: parts.append(f"EMA200: {indicators['ema_200']:.6f}")
if 'adx' in indicators: parts.append(f"ADX: {indicators['adx']:.2f}")
if 'ichimoku_conversion' in indicators: parts.append(f"Ichimoku Conv: {indicators['ichimoku_conversion']:.6f}")
if 'ichimoku_base' in indicators: parts.append(f"Ichimoku Base: {indicators['ichimoku_base']:.6f}")
# مؤشرات الزخم
if 'rsi' in indicators: parts.append(f"RSI: {indicators['rsi']:.2f}")
if 'macd_hist' in indicators: parts.append(f"MACD Hist: {indicators['macd_hist']:.6f}")
if 'macd_line' in indicators: parts.append(f"MACD Line: {indicators['macd_line']:.6f}")
if 'stoch_rsi_k' in indicators: parts.append(f"Stoch RSI: {indicators['stoch_rsi_k']:.2f}")
if 'williams_r' in indicators: parts.append(f"Williams %R: {indicators['williams_r']:.2f}")
# مؤشرات التقلب
if 'bb_upper' in indicators: parts.append(f"BB Upper: {indicators['bb_upper']:.6f}")
if 'bb_lower' in indicators: parts.append(f"BB Lower: {indicators['bb_lower']:.6f}")
if 'bb_middle' in indicators: parts.append(f"BB Middle: {indicators['bb_middle']:.6f}")
if 'atr' in indicators: parts.append(f"ATR: {indicators['atr']:.6f}")
if 'atr_percent' in indicators: parts.append(f"ATR %: {indicators['atr_percent']:.2f}%")
# مؤشرات الحجم
if 'volume_ratio' in indicators: parts.append(f"Volume Ratio: {indicators['volume_ratio']:.2f}x")
if 'vwap' in indicators: parts.append(f"VWAP: {indicators['vwap']:.6f}")
if 'obv' in indicators: parts.append(f"OBV: {indicators['obv']:.0f}")
if 'mfi' in indicators: parts.append(f"MFI: {indicators['mfi']:.2f}")
# مؤشرات الدورة
if 'hull_ma' in indicators: parts.append(f"Hull MA: {indicators['hull_ma']:.6f}")
if 'supertrend' in indicators: parts.append(f"Supertrend: {indicators['supertrend']:.6f}")
if parts:
summary.append(f"{timeframe.upper()}: {', '.join(parts)}")
return "\n".join(summary) if summary else "Insufficient indicator data."
def format_strategy_scores(strategy_scores, recommended_strategy):
if not strategy_scores: return "No strategy data available."
summary = [f"Recommended Strategy: {recommended_strategy}"]
sorted_scores = sorted(strategy_scores.items(), key=lambda item: item[1], reverse=True)
for strategy, score in sorted_scores:
score_display = f"{score:.3f}" if isinstance(score, (int, float)) else str(score)
summary.append(f" • {strategy}: {score_display}")
return "\n".join(summary)
def format_whale_analysis_for_llm(whale_analysis):
"""تنسيق تحليل الحيتان للنموذج الضخم بشكل مفيد وواضح"""
if not whale_analysis or not whale_analysis.get('data_available', False):
return "📊 تحليل الحيتان: لا توجد بيانات عن تحركات الحيتان الحديثة"
summary = whale_analysis.get('llm_friendly_summary', {})
if not summary:
return "📊 تحليل الحيتان: بيانات الحيتان غير متوفرة"
formatted = f"📊 تحليل الحيتان:\n"
formatted += f" • النشاط: {summary.get('whale_activity_summary', 'لا توجد معلومات')}\n"
formatted += f" • التوصية: {summary.get('recommended_action', 'HOLD')}\n"
formatted += f" • مستوى الثقة: {summary.get('confidence', 0.5):.1%}\n"
metrics = summary.get('key_metrics', {})
if metrics:
flow_direction = metrics.get('net_flow_direction', 'غير معروف')
impact_level = metrics.get('whale_movement_impact', 'غير معروف')
exchange_involvement = metrics.get('exchange_involvement', 'غير معروف')
formatted += f" • اتجاه التدفق: {flow_direction}\n"
formatted += f" • مستوى التأثير: {impact_level}\n"
formatted += f" • مشاركة المنصات: {exchange_involvement}"
# إضافة تحذير إذا كان هناك نشاط حرج
if whale_analysis.get('trading_signal', {}).get('critical_alert', False):
formatted += "\n ⚠️ تحذير: نشاط حيتان حرج يتطلب الحذر"
return formatted
def validate_candidate_data_enhanced(candidate):
try:
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
for field in required_fields:
if field not in candidate: candidate[field] = 0.0 if field.endswith('_score') or field == 'current_price' else 'UNKNOWN'
candidate['current_price'] = safe_float_conversion(candidate.get('current_price'), 0.0)
candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.0) # ❌ تغيير من 0.5 إلى 0.0
candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score'])
if 'reasons_for_candidacy' not in candidate: candidate['reasons_for_candidacy'] = ['unknown_reason']
if 'sentiment_data' not in candidate: candidate['sentiment_data'] = {'btc_sentiment': 'NEUTRAL','fear_and_greed_index': 50,'general_whale_activity': {'sentiment': 'NEUTRAL', 'critical_alert': False}}
if 'advanced_indicators' not in candidate: candidate['advanced_indicators'] = {}
if 'strategy_scores' not in candidate: candidate['strategy_scores'] = {}
if 'target_strategy' not in candidate: candidate['target_strategy'] = 'GENERIC'
return True
except Exception as error:
print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}")
return False
def normalize_weights(weights_dict):
total = sum(weights_dict.values())
if total > 0:
for strategy in weights_dict:
weights_dict[strategy] /= total
return weights_dict
def calculate_market_volatility(market_context):
try:
btc_price = market_context.get('bitcoin_price_usd', 0)
fear_greed = market_context.get('fear_and_greed_index', 50)
whale_sentiment = market_context.get('general_whale_activity', {}).get('sentiment', 'NEUTRAL')
volatility_score = 0
if btc_price > 0:
if abs(fear_greed - 50) > 20:
volatility_score += 1
if whale_sentiment in ['BULLISH', 'BEARISH']:
volatility_score += 1
elif whale_sentiment == 'SLIGHTLY_BULLISH':
volatility_score += 0.5
if volatility_score >= 1.5:
return "high"
elif volatility_score >= 0.5:
return "medium"
else:
return "low"
except Exception as e:
print(f"Volatility calculation error: {e}")
return "medium"
def generate_trade_id():
return str(int(time.time()))
def should_update_weights(performance_history_count):
if performance_history_count <= 10:
return True
return performance_history_count % 3 == 0
def format_enhanced_analysis_for_llm(candidate_data, whale_analysis=None, market_context=None):
"""تنسيق تحليل متقدم شامل للنموذج الضخم"""
formatted = "📈 التحليل الشامل للعملة:\n"
# المعلومات الأساسية
formatted += f"💰 العملة: {candidate_data.get('symbol', 'N/A')}\n"
formatted += f"💰 السعر الحالي: ${safe_float_conversion(candidate_data.get('current_price', 0)):.6f}\n"
formatted += f"🎯 النتيجة المحسنة: {safe_float_conversion(candidate_data.get('enhanced_final_score', 0)):.3f}\n"
# المؤشرات الفنية
advanced_indicators = candidate_data.get('advanced_indicators', {})
if advanced_indicators:
formatted += "\n🔧 المؤشرات الفنية:\n"
for timeframe, indicators in advanced_indicators.items():
if indicators:
tech_parts = []
if 'rsi' in indicators: tech_parts.append(f"RSI: {indicators['rsi']:.1f}")
if 'macd_hist' in indicators: tech_parts.append(f"MACD: {indicators['macd_hist']:.6f}")
if 'volume_ratio' in indicators: tech_parts.append(f"Volume: {indicators['volume_ratio']:.1f}x")
if 'ema_9' in indicators and 'ema_21' in indicators:
ema_signal = "↑" if indicators['ema_9'] > indicators['ema_21'] else "↓"
tech_parts.append(f"EMA: {ema_signal}")
if 'adx' in indicators: tech_parts.append(f"ADX: {indicators['adx']:.1f}")
if 'bb_upper' in indicators and 'bb_lower' in indicators:
bb_position = (candidate_data.get('current_price', 0) - indicators['bb_lower']) / (indicators['bb_upper'] - indicators['bb_lower'])
bb_signal = "HIGH" if bb_position > 0.8 else "LOW" if bb_position < 0.2 else "MID"
tech_parts.append(f"BB: {bb_signal}")
if tech_parts:
formatted += f" • {timeframe}: {', '.join(tech_parts)}\n"
# استراتيجيات التداول
strategy_scores = candidate_data.get('strategy_scores', {})
if strategy_scores:
formatted += "\n🎯 استراتيجيات التداول:\n"
sorted_strategies = sorted(strategy_scores.items(), key=lambda x: x[1], reverse=True)[:3]
for strategy, score in sorted_strategies:
formatted += f" • {strategy}: {score:.3f}\n"
# بيانات الحيتان (إذا كانت متوفرة)
if whale_analysis:
formatted += f"\n{format_whale_analysis_for_llm(whale_analysis)}\n"
# سياق السوق (إذا كان متوفراً)
if market_context:
formatted += "\n🌍 سياق السوق العام:\n"
btc_sentiment = market_context.get('btc_sentiment', 'NEUTRAL')
fear_greed = market_context.get('fear_and_greed_index', 50)
formatted += f" • اتجاه البيتكوين: {btc_sentiment}\n"
formatted += f" • مؤشر الخوف والجشع: {fear_greed}\n"
# أسباب الترشيح
reasons = candidate_data.get('reasons_for_candidacy', [])
if reasons and len(reasons) > 0:
formatted += "\n📋 أسباب الترشيح:\n"
for i, reason in enumerate(reasons[:5], 1):
formatted += f" {i}. {reason}\n"
return formatted
def create_whale_aware_trading_decision(base_decision, whale_analysis):
"""إنشاء قرار تداول مدرك لبيانات الحيتان"""
if not whale_analysis or not whale_analysis.get('data_available', False):
return base_decision
whale_signal = whale_analysis.get('trading_signal', {})
whale_action = whale_signal.get('action', 'HOLD')
whale_confidence = whale_signal.get('confidence', 0.5)
base_action = base_decision.get('action', 'HOLD')
base_confidence = base_decision.get('confidence_level', 0.5)
# إذا كانت إشارة الحيتان حرجة، نعطيها أولوية عالية
if whale_signal.get('critical_alert', False):
if whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY':
return {
**base_decision,
'action': 'HOLD',
'confidence_level': base_confidence * 0.6,
'reasoning': f"{base_decision.get('reasoning', '')} | تم التصحيح بسبب نشاط الحيتان الحرج: {whale_signal.get('reason', '')}"
}
elif whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'HOLD':
return {
**base_decision,
'action': 'BUY',
'confidence_level': (base_confidence + whale_confidence) / 2,
'reasoning': f"{base_decision.get('reasoning', '')} | تم التعزيز بسبب نشاط الحيتان الإيجابي: {whale_signal.get('reason', '')}"
}
# دمج الثقة مع إعطاء وزن 60% لبيانات الحيتان
combined_confidence = (base_confidence * 0.4) + (whale_confidence * 0.6)
# إذا كانت إشارة الحيتان قوية ومعاكسة، نغير القرار
if whale_confidence > 0.8:
if (whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY') or \
(whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'SELL'):
return {
**base_decision,
'action': 'HOLD',
'confidence_level': combined_confidence * 0.8,
'reasoning': f"{base_decision.get('reasoning', '')} | تعارض مع تحركات الحيتان: {whale_signal.get('reason', '')}"
}
# إذا كانت الإشارات متوافقة، نعزز الثقة
if (whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'BUY') or \
(whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'SELL'):
enhanced_confidence = min(combined_confidence * 1.2, 0.95)
return {
**base_decision,
'confidence_level': enhanced_confidence,
'reasoning': f"{base_decision.get('reasoning', '')} | متوافق مع تحركات الحيتان"
}
# في الحالات الأخرى، نعيد القرار الأساسي مع الثقة المجمعة
return {
**base_decision,
'confidence_level': combined_confidence,
'reasoning': f"{base_decision.get('reasoning', '')} | أخذ بعين الاعتبار نشاط الحيتان"
}
def validate_whale_analysis_data(whale_data):
"""التحقق من صحة بيانات تحليل الحيتان"""
if not whale_data:
return False, "بيانات الحيتان فارغة"
required_fields = ['symbol', 'data_available', 'trading_signal']
for field in required_fields:
if field not in whale_data:
return False, f"حقل {field} مفقود في بيانات الحيتان"
if not whale_data['data_available']:
return True, "لا توجد بيانات حيتان متاحة"
signal_fields = ['action', 'confidence', 'reason']
trading_signal = whale_data.get('trading_signal', {})
for field in signal_fields:
if field not in trading_signal:
return False, f"حقل {field} مفقود في إشارة التداول"
valid_actions = ['STRONG_BUY', 'BUY', 'HOLD', 'SELL', 'STRONG_SELL']
if trading_signal.get('action') not in valid_actions:
return False, f"إجراء تداول غير صالح: {trading_signal.get('action')}"
confidence = trading_signal.get('confidence', 0)
if not (0 <= confidence <= 1):
return False, f"مستوى الثقة خارج النطاق: {confidence}"
return True, "بيانات الحيتان صالحة"
def calculate_whale_impact_score(whale_analysis):
"""حساب درجة تأثير الحيتان من 0 إلى 100"""
if not whale_analysis or not whale_analysis.get('data_available', False):
return 0
trading_signal = whale_analysis.get('trading_signal', {})
action = trading_signal.get('action', 'HOLD')
confidence = trading_signal.get('confidence', 0.5)
# تعيين أوزان للإجراءات المختلفة
action_weights = {
'STRONG_BUY': 100,
'BUY': 75,
'HOLD': 50,
'SELL': 25,
'STRONG_SELL': 0
}
base_score = action_weights.get(action, 50)
# تعديل الدرجة بناء على مستوى الثقة
if confidence > 0.8:
adjusted_score = base_score * 1.2
elif confidence > 0.6:
adjusted_score = base_score * 1.0
else:
adjusted_score = base_score * 0.8
# إذا كان هناك تحذير حرج، نعطي وزن إضافي
if trading_signal.get('critical_alert', False):
if action in ['STRONG_SELL', 'SELL']:
adjusted_score = max(0, adjusted_score - 20)
elif action in ['STRONG_BUY', 'BUY']:
adjusted_score = min(100, adjusted_score + 20)
return min(100, max(0, adjusted_score))
def format_whale_impact_for_display(whale_analysis):
"""تنسيق تأثير الحيتان للعرض في الواجهة"""
impact_score = calculate_whale_impact_score(whale_analysis)
if impact_score >= 80:
return "🟢 تأثير إيجابي قوي"
elif impact_score >= 60:
return "🟡 تأثير إيجابي متوسط"
elif impact_score >= 40:
return "⚪ تأثير محايد"
elif impact_score >= 20:
return "🟠 تأثير سلبي متوسط"
else:
return "🔴 تأثير سلبي قوي"
def should_override_trade_decision(base_decision, whale_analysis):
"""تحديد إذا كان يجب تغيير قرار التداول بناء على تحركات الحيتان"""
if not whale_analysis or not whale_analysis.get('data_available', False):
return False
whale_signal = whale_analysis.get('trading_signal', {})
whale_action = whale_signal.get('action', 'HOLD')
whale_confidence = whale_signal.get('confidence', 0.5)
base_action = base_decision.get('action', 'HOLD')
# شروط التغيير الإلزامي
mandatory_override_conditions = [
whale_signal.get('critical_alert', False) and whale_confidence > 0.8,
whale_confidence > 0.9 and whale_action in ['STRONG_SELL', 'STRONG_BUY'],
base_action == 'BUY' and whale_action == 'STRONG_SELL' and whale_confidence > 0.7,
base_action == 'SELL' and whale_action == 'STRONG_BUY' and whale_confidence > 0.7
]
return any(mandatory_override_conditions)
def format_candle_data_for_pattern_analysis(ohlcv_data, timeframe='1h'):
"""تنسيق بيانات الشموع لتحليل الأنماط البيانية"""
if not ohlcv_data or timeframe not in ohlcv_data:
return "لا توجد بيانات شموع كافية لتحليل الأنماط"
candles = ohlcv_data[timeframe]
if len(candles) < 20:
return f"بيانات غير كافية ({len(candles)} شمعة فقط)"
# أخذ آخر 50 شمعة للتحليل
recent_candles = candles[-50:] if len(candles) > 50 else candles
formatted = f"📊 بيانات الشموع للإطار {timeframe.upper()} (آخر {len(recent_candles)} شمعة):\n"
# تحليل الاتجاه
first_close = recent_candles[0][4]
last_close = recent_candles[-1][4]
price_change = ((last_close - first_close) / first_close) * 100
trend = "🟢 صاعد" if price_change > 2 else "🔴 هابط" if price_change < -2 else "⚪ جانبي"
# تحليل التقلب
highs = [c[2] for c in recent_candles]
lows = [c[3] for c in recent_candles]
high_max = max(highs)
low_min = min(lows)
volatility = ((high_max - low_min) / low_min) * 100
# تحليل الحجم
volumes = [c[5] for c in recent_candles]
avg_volume = sum(volumes) / len(volumes)
current_volume = recent_candles[-1][5]
volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1
formatted += f"📈 الاتجاه: {trend} ({price_change:+.2f}%)\n"
formatted += f"🌊 التقلب: {volatility:.2f}% (النطاق: {low_min:.6f} - {high_max:.6f})\n"
formatted += f"📦 الحجم: {volume_ratio:.2f}x المتوسط\n\n"
# عرض آخر 10 شموع بالتفصيل
formatted += "🕯️ آخر 10 شموع (من الأحدث إلى الأقدم):\n"
for i in range(min(10, len(recent_candles))):
idx = len(recent_candles) - 1 - i
candle = recent_candles[idx]
timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%H:%M')
open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5]
candle_type = "🟢" if close > open_price else "🔴" if close < open_price else "⚪"
body_size = abs(close - open_price) / open_price * 100
wick_upper = (high - max(open_price, close)) / high * 100
wick_lower = (min(open_price, close) - low) / low * 100
formatted += f" {timestamp} {candle_type} O:{open_price:.6f} H:{high:.6f} L:{low:.6f} C:{close:.6f} V:{volume:.0f}\n"
formatted += f" الجسم: {body_size:.2f}% | الظلال: علوية {wick_upper:.2f}% / سفلية {wick_lower:.2f}%\n"
return formatted |