Spaces:
Running
Running
File size: 24,988 Bytes
632c1d5 90767a7 53cf6c0 90767a7 1af938b 53cf6c0 90767a7 53cf6c0 1af938b 632c1d5 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 632c1d5 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 632c1d5 53cf6c0 90767a7 53cf6c0 632c1d5 53cf6c0 90767a7 e35582f 53cf6c0 632c1d5 53cf6c0 632c1d5 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 632c1d5 1af938b 632c1d5 1af938b 632c1d5 1af938b 632c1d5 53cf6c0 1af938b 90767a7 632c1d5 53cf6c0 632c1d5 1af938b 632c1d5 53cf6c0 90767a7 53cf6c0 90767a7 632c1d5 1af938b 632c1d5 53cf6c0 e35582f 632c1d5 1af938b 632c1d5 53cf6c0 632c1d5 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 90767a7 1af938b 53cf6c0 1af938b 53cf6c0 90767a7 632c1d5 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 20dc709 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 632c1d5 1af938b 632c1d5 1af938b 632c1d5 53cf6c0 90767a7 53cf6c0 1af938b 90767a7 632c1d5 1af938b 632c1d5 53cf6c0 632c1d5 1af938b 632c1d5 53cf6c0 90767a7 53cf6c0 90767a7 632c1d5 53cf6c0 632c1d5 53cf6c0 90767a7 53cf6c0 1af938b 53cf6c0 632c1d5 53cf6c0 90767a7 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b 53cf6c0 1af938b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
# LLM.py
import os, traceback, asyncio, json
from datetime import datetime
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError
import numpy as np
from sentiment_news import NewsFetcher
from helpers import parse_json_from_response, validate_required_fields, format_technical_indicators, format_strategy_scores, format_candle_data_for_pattern_analysis, format_whale_analysis_for_llm
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"
class PatternAnalysisEngine:
def __init__(self, llm_service):
self.llm = llm_service
def _format_chart_data_for_llm(self, ohlcv_data):
"""ุชูุณูู ุดุงู
ู ูุจูุงูุงุช ุงูุดู
ูุน ูุชุญููู ุงูุฃูู
ุงุท"""
if not ohlcv_data:
return "Insufficient chart data for pattern analysis"
try:
# ุงุณุชุฎุฏุงู
ุฌู
ูุน ุงูุฃุทุฑ ุงูุฒู
ููุฉ ุงูู
ุชุงุญุฉ
all_timeframes = []
for timeframe, candles in ohlcv_data.items():
if candles and len(candles) >= 20:
candle_summary = format_candle_data_for_pattern_analysis({timeframe: candles}, timeframe)
all_timeframes.append(f"=== {timeframe.upper()} TIMEFRAME ===\n{candle_summary}")
return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
except Exception as e:
return f"Error formatting chart data: {str(e)}"
async def analyze_chart_patterns(self, symbol, ohlcv_data):
try:
if not ohlcv_data:
return {"pattern_detected": "insufficient_data", "pattern_confidence": 0.1, "pattern_analysis": "No candle data available"}
chart_text = self._format_chart_data_for_llm(ohlcv_data)
prompt = f"""
ANALYZE CHART PATTERNS FOR {symbol}
CANDLE DATA FOR TECHNICAL ANALYSIS:
{chart_text}
PATTERN ANALYSIS INSTRUCTIONS:
1. Analyze ALL available timeframes (1w, 1d, 4h, 1h, 15m, 5m)
2. Identify clear chart patterns (Double Top/Bottom, Head & Shoulders, Triangles, Flags, etc.)
3. Assess trend direction and strength
4. Identify key support and resistance levels
5. Evaluate volume patterns
6. Look for convergence/divergence across timeframes
7. Consider candlestick patterns and formations
CRITICAL: You MUST analyze at least 3 different timeframes to confirm patterns.
OUTPUT FORMAT (JSON):
{{
"pattern_detected": "pattern_name",
"pattern_confidence": 0.85,
"pattern_strength": "strong/medium/weak",
"predicted_direction": "up/down/sideways",
"predicted_movement_percent": 5.50,
"timeframe_expectation": "15-25 minutes",
"key_support_levels": [0.1200, 0.1180, 0.1150],
"key_resistance_levels": [0.1300, 0.1320, 0.1350],
"pattern_analysis": "Detailed explanation covering multiple timeframes",
"timeframe_confirmations": {{
"1h": "pattern_details",
"4h": "pattern_details",
"1d": "pattern_details"
}},
"risk_assessment": "low/medium/high",
"recommended_entry": 0.1234,
"recommended_targets": [0.1357, 0.1400],
"recommended_stop_loss": 0.1189
}}
"""
response = await self.llm._call_llm(prompt)
return self._parse_pattern_response(response)
except Exception as e:
print(f"Chart pattern analysis failed for {symbol}: {e}")
return None
def _parse_pattern_response(self, response_text):
try:
json_str = parse_json_from_response(response_text)
if not json_str:
return {"pattern_detected": "parse_error", "pattern_confidence": 0.1, "pattern_analysis": "Could not parse pattern analysis response"}
pattern_data = json.loads(json_str)
required = ['pattern_detected', 'pattern_confidence', 'predicted_direction']
if not validate_required_fields(pattern_data, required):
return {"pattern_detected": "incomplete_data", "pattern_confidence": 0.1, "pattern_analysis": "Incomplete pattern analysis data"}
return pattern_data
except Exception as e:
print(f"Error parsing pattern response: {e}")
return {"pattern_detected": "parse_error", "pattern_confidence": 0.1, "pattern_analysis": f"Error parsing pattern analysis: {str(e)}"}
class LLMService:
def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
self.api_key = api_key
self.model_name = model_name
self.temperature = temperature
self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
self.news_fetcher = NewsFetcher()
self.pattern_engine = PatternAnalysisEngine(self)
self.semaphore = asyncio.Semaphore(5)
self.r2_service = None # ุณูุชู
ุชุนูููู ู
ู app.py
def _rate_limit_nvidia_api(func):
@wraps(func)
@on_exception(expo, RateLimitError, max_tries=5)
async def wrapper(*args, **kwargs):
return await func(*args, **kwargs)
return wrapper
async def get_trading_decision(self, data_payload: dict):
try:
symbol = data_payload.get('symbol', 'unknown')
target_strategy = data_payload.get('target_strategy', 'GENERIC')
# ุฌูุจ ุฌู
ูุน ุงูุจูุงูุงุช ุงูู
ุทููุจุฉ
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
pattern_analysis = await self._get_pattern_analysis(data_payload)
whale_data = data_payload.get('whale_data', {})
# ุฅูุดุงุก ุงูู prompt ุงูุดุงู
ู
prompt = self._create_comprehensive_trading_prompt(data_payload, news_text, pattern_analysis, whale_data)
# โ
ุญูุธ ุงูู Prompt ูู R2 ูุจู ุฅุฑุณุงูู ูููู
ูุฐุฌ
if self.r2_service:
analysis_data = {
'symbol': symbol,
'current_price': data_payload.get('current_price'),
'final_score': data_payload.get('final_score'),
'enhanced_final_score': data_payload.get('enhanced_final_score'),
'target_strategy': target_strategy,
'pattern_analysis': pattern_analysis,
'whale_data_available': whale_data.get('data_available', False),
'timestamp': datetime.now().isoformat()
}
await self.r2_service.save_llm_prompts_async(
symbol, 'comprehensive_trading_decision', prompt, analysis_data
)
async with self.semaphore:
response = await self._call_llm(prompt)
decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
if decision_dict:
decision_dict['model_source'] = self.model_name
decision_dict['pattern_analysis'] = pattern_analysis
decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
return decision_dict
else:
print(f"โ ูุดู ุชุญููู ุงููู
ูุฐุฌ ุงูุถุฎู
ูู {symbol} - ูุง ุชูุฌุฏ ูุฑุงุฑุงุช ุจุฏููุฉ")
return None
except Exception as e:
print(f"โ ุฎุทุฃ ูู ูุฑุงุฑ ุงูุชุฏุงูู ูู {data_payload.get('symbol', 'unknown')}: {e}")
traceback.print_exc()
return None
def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str:
print(f"โ ูุดู ุงุณุชุฎุฑุงุฌ JSON ู
ู ุงุณุชุฌุงุจุฉ ุงููู
ูุฐุฌ ูู {symbol}")
return None
decision_data = json.loads(json_str)
required_fields = ['action', 'reasoning', 'risk_assessment', 'trade_type', 'stop_loss', 'take_profit', 'expected_target_minutes', 'confidence_level']
if not validate_required_fields(decision_data, required_fields):
print(f"โ ุญููู ู
ุทููุจุฉ ู
ูููุฏุฉ ูู ุงุณุชุฌุงุจุฉ ุงููู
ูุฐุฌ ูู {symbol}")
return None
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown':
decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"โ ุฎุทุฃ ูู ุชุญููู ุงุณุชุฌุงุจุฉ ุงููู
ูุฐุฌ ูู {symbol}: {e}")
return None
async def _get_pattern_analysis(self, data_payload):
try:
symbol = data_payload['symbol']
ohlcv_data = data_payload.get('ohlcv') or data_payload.get('raw_ohlcv')
if ohlcv_data:
return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
return None
except Exception as e:
print(f"โ ูุดู ุชุญููู ุงูุฃูู
ุงุท ูู {data_payload.get('symbol')}: {e}")
return None
def _create_comprehensive_trading_prompt(self, payload: dict, news_text: str, pattern_analysis: dict, whale_data: dict) -> str:
symbol = payload.get('symbol', 'N/A')
current_price = payload.get('current_price', 'N/A')
reasons = payload.get('reasons_for_candidacy', [])
sentiment_data = payload.get('sentiment_data', {})
advanced_indicators = payload.get('advanced_indicators', {})
strategy_scores = payload.get('strategy_scores', {})
recommended_strategy = payload.get('recommended_strategy', 'N/A')
target_strategy = payload.get('target_strategy', 'GENERIC')
final_score = payload.get('final_score', 'N/A')
enhanced_final_score = payload.get('enhanced_final_score', 'N/A')
ohlcv_data = payload.get('ohlcv') or payload.get('raw_ohlcv', {})
final_score_display = f"{final_score:.3f}" if isinstance(final_score, (int, float)) else str(final_score)
enhanced_score_display = f"{enhanced_final_score:.3f}" if isinstance(enhanced_final_score, (int, float)) else str(enhanced_final_score)
# ุชูุณูู ุฌู
ูุน ุงูุจูุงูุงุช ุจุดูู ุดุงู
ู
indicators_summary = format_technical_indicators(advanced_indicators)
strategies_summary = format_strategy_scores(strategy_scores, recommended_strategy)
pattern_summary = self._format_pattern_analysis(pattern_analysis)
whale_analysis_section = format_whale_analysis_for_llm(whale_data)
candle_data_section = self._format_candle_data_comprehensive(ohlcv_data)
market_context_section = self._format_market_context(sentiment_data)
prompt = f"""
COMPREHENSIVE TRADING ANALYSIS FOR {symbol}
๐ฏ STRATEGY CONTEXT:
- Target Strategy: {target_strategy}
- Recommended Strategy: {recommended_strategy}
- Current Price: ${current_price}
- System Score: {final_score_display}
- Enhanced Score: {enhanced_score_display}
๐ TECHNICAL INDICATORS (ALL TIMEFRAMES):
{indicators_summary}
๐ CANDLE DATA & PATTERN ANALYSIS:
{candle_data_section}
๐ PATTERN ANALYSIS RESULTS:
{pattern_summary}
๐ฏ STRATEGY ANALYSIS:
{strategies_summary}
๐ WHALE ACTIVITY ANALYSIS:
{whale_analysis_section}
๐ MARKET CONTEXT:
{market_context_section}
๐ฐ LATEST NEWS:
{news_text if news_text else "No significant news found"}
๐ REASONS FOR CANDIDACY:
{chr(10).join([f"โข {reason}" for reason in reasons]) if reasons else "No specific reasons provided"}
๐ฏ TRADING DECISION INSTRUCTIONS:
1. ANALYZE ALL PROVIDED DATA: technical indicators, whale activity, patterns, market context
2. CONSIDER STRATEGY ALIGNMENT: {target_strategy}
3. EVALUATE RISK-REWARD RATIO based on support/resistance levels
4. INTEGRATE WHALE ACTIVITY signals into your decision
5. CONSIDER PATTERN STRENGTH and timeframe confirmations
6. ASSESS MARKET SENTIMENT impact
CRITICAL: You MUST provide specific price levels and time expectations.
OUTPUT FORMAT (JSON):
{{
"action": "BUY/SELL/HOLD",
"reasoning": "Detailed explanation integrating ALL data sources (technical, whale, patterns, news)",
"risk_assessment": "low/medium/high",
"trade_type": "LONG/SHORT",
"stop_loss": 0.000000,
"take_profit": 0.000000,
"expected_target_minutes": 15,
"confidence_level": 0.85,
"strategy": "{target_strategy}",
"whale_influence": "How whale data influenced the decision",
"pattern_influence": "How chart patterns influenced the decision",
"key_support_level": 0.000000,
"key_resistance_level": 0.000000,
"risk_reward_ratio": 2.5
}}
"""
return prompt
def _format_pattern_analysis(self, pattern_analysis):
if not pattern_analysis:
return "No clear patterns detected across analyzed timeframes"
confidence = pattern_analysis.get('pattern_confidence', 0)
pattern_name = pattern_analysis.get('pattern_detected', 'unknown')
predicted_direction = pattern_analysis.get('predicted_direction', 'N/A')
movement_percent = pattern_analysis.get('predicted_movement_percent', 'N/A')
analysis_lines = [
f"๐ฏ Pattern: {pattern_name}",
f"๐ Confidence: {confidence:.1%}",
f"๐ Predicted Direction: {predicted_direction}",
f"๐ฐ Expected Movement: {movement_percent}%",
f"๐ Analysis: {pattern_analysis.get('pattern_analysis', 'No detailed analysis')}"
]
# ุฅุถุงูุฉ ู
ุณุชููุงุช ุงูุฏุนู
ูุงูู
ูุงูู
ุฉ ุฅุฐุง ูุงูุช ู
ุชููุฑุฉ
support_levels = pattern_analysis.get('key_support_levels', [])
resistance_levels = pattern_analysis.get('key_resistance_levels', [])
if support_levels:
analysis_lines.append(f"๐ Support Levels: {', '.join([f'{level:.6f}' for level in support_levels[:3]])}")
if resistance_levels:
analysis_lines.append(f"๐ง Resistance Levels: {', '.join([f'{level:.6f}' for level in resistance_levels[:3]])}")
return "\n".join(analysis_lines)
def _format_candle_data_comprehensive(self, ohlcv_data):
"""ุชูุณูู ุดุงู
ู ูุจูุงูุงุช ุงูุดู
ูุน"""
if not ohlcv_data:
return "No candle data available for analysis"
try:
timeframes_available = []
for timeframe, candles in ohlcv_data.items():
if candles and len(candles) >= 20:
timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)")
if not timeframes_available:
return "Insufficient candle data across all timeframes"
summary = f"๐ Available Timeframes: {', '.join(timeframes_available)}\n\n"
# ุชุญููู ููู ุฅุทุงุฑ ุฒู
ูู ุฑุฆูุณู
for timeframe in ['1d', '4h', '1h', '15m']:
if timeframe in ohlcv_data and ohlcv_data[timeframe]:
candles = ohlcv_data[timeframe]
if len(candles) >= 20:
timeframe_analysis = self._analyze_timeframe_candles(candles, timeframe)
summary += f"โฐ {timeframe.upper()} ANALYSIS:\n{timeframe_analysis}\n\n"
return summary
except Exception as e:
return f"Error formatting candle data: {str(e)}"
def _analyze_timeframe_candles(self, candles, timeframe):
"""ุชุญููู ุงูุดู
ูุน ูุฅุทุงุฑ ุฒู
ูู ู
ุญุฏุฏ"""
try:
if len(candles) < 20:
return "Insufficient data"
recent_candles = candles[-20:] # ุขุฎุฑ 20 ุดู
ุนุฉ
# ุญุณุงุจ ุงูู
ุชุบูุฑุงุช ุงูุฃุณุงุณูุฉ
closes = [c[4] for c in recent_candles]
opens = [c[1] for c in recent_candles]
highs = [c[2] for c in recent_candles]
lows = [c[3] for c in recent_candles]
volumes = [c[5] for c in recent_candles]
current_price = closes[-1]
first_price = closes[0]
price_change = ((current_price - first_price) / first_price) * 100
# ุชุญููู ุงูุงุชุฌุงู
if price_change > 2:
trend = "๐ข UPTREND"
elif price_change < -2:
trend = "๐ด DOWNTREND"
else:
trend = "โช SIDEWAYS"
# ุชุญููู ุงูุชููุจ
high_max = max(highs)
low_min = min(lows)
volatility = ((high_max - low_min) / low_min) * 100
# ุชุญููู ุงูุญุฌู
avg_volume = sum(volumes) / len(volumes)
current_volume = volumes[-1]
volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1
# ุชุญููู ุงูุดู
ูุน
green_candles = sum(1 for i in range(len(closes)) if closes[i] > opens[i])
red_candles = len(closes) - green_candles
candle_ratio = green_candles / len(closes)
analysis = [
f"๐ Trend: {trend} ({price_change:+.2f}%)",
f"๐ Volatility: {volatility:.2f}%",
f"๐ฆ Volume: {volume_ratio:.2f}x average",
f"๐ฏ๏ธ Candles: {green_candles}๐ข/{red_candles}๐ด ({candle_ratio:.1%} green)",
f"๐ฐ Range: {low_min:.6f} - {high_max:.6f}",
f"๐ฏ Current: {current_price:.6f}"
]
return "\n".join(analysis)
except Exception as e:
return f"Analysis error: {str(e)}"
def _format_market_context(self, sentiment_data):
"""ุชูุณูู ุณูุงู ุงูุณูู"""
if not sentiment_data:
return "No market context data available"
btc_sentiment = sentiment_data.get('btc_sentiment', 'N/A')
fear_greed = sentiment_data.get('fear_and_greed_index', 'N/A')
market_trend = sentiment_data.get('market_trend', 'N/A')
lines = [
"๐ MARKET CONTEXT:",
f"โข Bitcoin Sentiment: {btc_sentiment}",
f"โข Fear & Greed Index: {fear_greed}",
f"โข Market Trend: {market_trend}"
]
general_whale = sentiment_data.get('general_whale_activity', {})
if general_whale:
whale_sentiment = general_whale.get('sentiment', 'N/A')
critical_alert = general_whale.get('critical_alert', False)
lines.append(f"โข General Whale Sentiment: {whale_sentiment}")
if critical_alert:
lines.append("โข โ ๏ธ CRITICAL WHALE ALERT")
return "\n".join(lines)
async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
try:
symbol = trade_data['symbol']
original_strategy = trade_data.get('strategy', 'GENERIC')
# ุฌูุจ ุฌู
ูุน ุงูุจูุงูุงุช ุงูู
ุญุฏุซุฉ
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
pattern_analysis = await self._get_pattern_analysis(processed_data)
whale_data = processed_data.get('whale_data', {})
prompt = self._create_re_analysis_prompt(trade_data, processed_data, news_text, pattern_analysis, whale_data)
# โ
ุญูุธ ุงูู Prompt ูู R2
if self.r2_service:
analysis_data = {
'symbol': symbol,
'entry_price': trade_data.get('entry_price'),
'current_price': processed_data.get('current_price'),
'original_strategy': original_strategy,
'pattern_analysis': pattern_analysis,
'whale_data_available': whale_data.get('data_available', False)
}
await self.r2_service.save_llm_prompts_async(
symbol, 'trade_reanalysis', prompt, analysis_data
)
async with self.semaphore:
response = await self._call_llm(prompt)
re_analysis_dict = self._parse_re_analysis_response(response, original_strategy, symbol)
if re_analysis_dict:
re_analysis_dict['model_source'] = self.model_name
re_analysis_dict['whale_data_integrated'] = whale_data.get('data_available', False)
return re_analysis_dict
else:
print(f"โ ูุดู ุฅุนุงุฏุฉ ุชุญููู ุงููู
ูุฐุฌ ุงูุถุฎู
ูู {symbol}")
return None
except Exception as e:
print(f"โ ุฎุทุฃ ูู ุฅุนุงุฏุฉ ุชุญููู LLM: {e}")
traceback.print_exc()
return None
def _parse_re_analysis_response(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str:
return None
decision_data = json.loads(json_str)
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown':
decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"Error parsing re-analysis response for {symbol}: {e}")
return None
def _create_re_analysis_prompt(self, trade_data: dict, processed_data: dict, news_text: str, pattern_analysis: dict, whale_data: dict) -> str:
symbol = trade_data.get('symbol', 'N/A')
entry_price = trade_data.get('entry_price', 'N/A')
current_price = processed_data.get('current_price', 'N/A')
strategy = trade_data.get('strategy', 'GENERIC')
try:
price_change = ((current_price - entry_price) / entry_price) * 100
price_change_display = f"{price_change:+.2f}%"
except (TypeError, ZeroDivisionError):
price_change_display = "N/A"
indicators_summary = format_technical_indicators(processed_data.get('advanced_indicators', {}))
pattern_summary = self._format_pattern_analysis(pattern_analysis)
whale_analysis_section = format_whale_analysis_for_llm(whale_data)
market_context_section = self._format_market_context(processed_data.get('sentiment_data', {}))
prompt = f"""
TRADE RE-ANALYSIS FOR {symbol}
๐ TRADE CONTEXT:
- Strategy: {strategy}
- Entry Price: {entry_price}
- Current Price: {current_price}
- Performance: {price_change_display}
- Trade Age: {trade_data.get('hold_duration_minutes', 'N/A')} minutes
๐ UPDATED TECHNICAL ANALYSIS:
{indicators_summary}
๐ UPDATED PATTERN ANALYSIS:
{pattern_summary}
๐ UPDATED WHALE ACTIVITY:
{whale_analysis_section}
๐ UPDATED MARKET CONTEXT:
{market_context_section}
๐ฐ LATEST NEWS:
{news_text if news_text else "No significant news found"}
๐ฏ RE-ANALYSIS INSTRUCTIONS:
1. Evaluate if the original thesis still holds
2. Consider new whale activity and patterns
3. Assess current risk-reward ratio
4. Decide whether to hold, close, or adjust the trade
5. Provide specific updated levels if adjusting
OUTPUT FORMAT (JSON):
{{
"action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
"reasoning": "Comprehensive justification based on updated analysis",
"new_stop_loss": 0.000000,
"new_take_profit": 0.000000,
"new_expected_minutes": 15,
"confidence_level": 0.85,
"strategy": "{strategy}",
"whale_influence_reanalysis": "How updated whale data influenced decision",
"pattern_influence_reanalysis": "How updated patterns influenced decision",
"risk_adjustment": "low/medium/high"
}}
"""
return prompt
@_rate_limit_nvidia_api
async def _call_llm(self, prompt: str) -> str:
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
seed=42,
max_tokens=4000
)
return response.choices[0].message.content
except (RateLimitError, APITimeoutError) as e:
print(f"โ LLM API Error: {e}. Retrying...")
raise
except Exception as e:
print(f"โ Unexpected LLM API error: {e}")
raise
print("โ
LLM Service loaded - Comprehensive Analysis with Whale Data & Pattern Integration") |