Spaces:
Running
Running
File size: 16,538 Bytes
90767a7 53cf6c0 90767a7 e35582f 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 90767a7 e35582f 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 e35582f 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 90767a7 e35582f 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 e35582f 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 20dc709 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 e35582f 53cf6c0 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 e35582f 53cf6c0 90767a7 e35582f 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 53cf6c0 90767a7 e35582f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os, traceback, asyncio, json
from datetime import datetime
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError
import numpy as np
from sentiment_news import NewsFetcher
from helpers import parse_json_from_response, validate_required_fields, format_technical_indicators, format_strategy_scores, local_analyze_opportunity, local_re_analyze_trade
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"
class PatternAnalysisEngine:
def __init__(self, llm_service):
self.llm = llm_service
def _format_chart_data_for_llm(self, ohlcv_data):
if not ohlcv_data or len(ohlcv_data) < 20: return "Insufficient chart data for pattern analysis"
try:
candles_to_analyze = ohlcv_data[-50:] if len(ohlcv_data) > 50 else ohlcv_data
chart_description = ["CANDLE DATA FOR PATTERN ANALYSIS:", f"Total candles available: {len(ohlcv_data)}", f"Candles used for analysis: {len(candles_to_analyze)}", ""]
if len(candles_to_analyze) >= 10:
recent_candles = candles_to_analyze[-10:]
chart_description.append("Recent 10 Candles (Latest First):")
for i, candle in enumerate(reversed(recent_candles)):
candle_idx = len(candles_to_analyze) - i
desc = f"Candle {candle_idx}: O:{candle[1]:.6f} H:{candle[2]:.6f} L:{candle[3]:.6f} C:{candle[4]:.6f} V:{candle[5]:.0f}"
chart_description.append(f" {desc}")
if len(candles_to_analyze) >= 2:
first_close = candles_to_analyze[0][4]
last_close = candles_to_analyze[-1][4]
price_change = ((last_close - first_close) / first_close) * 100
trend = "BULLISH" if price_change > 2 else "BEARISH" if price_change < -2 else "SIDEWAYS"
highs = [c[2] for c in candles_to_analyze]
lows = [c[3] for c in candles_to_analyze]
high_max = max(highs)
low_min = min(lows)
volatility = ((high_max - low_min) / low_min) * 100
chart_description.extend(["", "MARKET STRUCTURE ANALYSIS:", f"Trend Direction: {trend}", f"Price Change: {price_change:+.2f}%", f"Volatility Range: {volatility:.2f}%", f"Highest Price: {high_max:.6f}", f"Lowest Price: {low_min:.6f}"])
if len(candles_to_analyze) >= 5:
volumes = [c[5] for c in candles_to_analyze]
avg_volume = sum(volumes) / len(volumes)
current_volume = candles_to_analyze[-1][5]
volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1
volume_signal = "HIGH" if volume_ratio > 2 else "NORMAL" if volume_ratio > 0.5 else "LOW"
chart_description.extend(["", "VOLUME ANALYSIS:", f"Current Volume: {current_volume:,.0f}", f"Volume Ratio: {volume_ratio:.2f}x average", f"Volume Signal: {volume_signal}"])
return "\n".join(chart_description)
except Exception as e: return f"Error formatting chart data: {str(e)}"
async def analyze_chart_patterns(self, symbol, ohlcv_data):
try:
if not ohlcv_data or len(ohlcv_data) < 20:
return {"pattern_detected": "insufficient_data", "pattern_confidence": 0.1, "pattern_analysis": "Insufficient candle data for pattern analysis"}
chart_text = self._format_chart_data_for_llm(ohlcv_data)
prompt = f"Analyze the following candle data for {symbol} and identify patterns.\n\nCANDLE DATA FOR ANALYSIS:\n{chart_text}\n\nOUTPUT FORMAT (JSON):\n{{\"pattern_detected\": \"pattern_name\",\"pattern_confidence\": 0.85,\"pattern_strength\": \"strong/medium/weak\",\"predicted_direction\": \"up/down/sideways\",\"predicted_movement_percent\": 5.50,\"timeframe_expectation\": \"15-25 minutes\",\"entry_suggestion\": 0.1234,\"target_suggestion\": 0.1357,\"stop_suggestion\": 0.1189,\"key_support\": 0.1200,\"key_resistance\": 0.1300,\"pattern_analysis\": \"Detailed explanation\"}}"
response = await self.llm._call_llm(prompt)
return self._parse_pattern_response(response)
except Exception as e:
print(f"Chart pattern analysis failed for {symbol}: {e}")
return None
def _parse_pattern_response(self, response_text):
try:
json_str = parse_json_from_response(response_text)
if not json_str: return {"pattern_detected": "parse_error", "pattern_confidence": 0.1, "pattern_analysis": "Could not parse pattern analysis response"}
pattern_data = json.loads(json_str)
required = ['pattern_detected', 'pattern_confidence', 'predicted_direction']
if not validate_required_fields(pattern_data, required): return {"pattern_detected": "incomplete_data", "pattern_confidence": 0.1, "pattern_analysis": "Incomplete pattern analysis data"}
return pattern_data
except Exception as e:
print(f"Error parsing pattern response: {e}")
return {"pattern_detected": "parse_error", "pattern_confidence": 0.1, "pattern_analysis": f"Error parsing pattern analysis: {str(e)}"}
class LLMService:
def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
self.api_key = api_key
self.model_name = model_name
self.temperature = temperature
self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
self.news_fetcher = NewsFetcher()
self.pattern_engine = PatternAnalysisEngine(self)
self.semaphore = asyncio.Semaphore(5)
def _rate_limit_nvidia_api(func):
@wraps(func)
@on_exception(expo, RateLimitError, max_tries=5)
async def wrapper(*args, **kwargs): return await func(*args, **kwargs)
return wrapper
async def get_trading_decision(self, data_payload: dict):
try:
symbol = data_payload.get('symbol', 'unknown')
target_strategy = data_payload.get('target_strategy', 'GENERIC')
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
pattern_analysis = await self._get_pattern_analysis(data_payload)
prompt = self._create_enhanced_trading_prompt(data_payload, news_text, pattern_analysis)
async with self.semaphore: response = await self._call_llm(prompt)
decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
if decision_dict:
decision_dict['model_source'] = self.model_name
decision_dict['pattern_analysis'] = pattern_analysis
return decision_dict
else: return local_analyze_opportunity(data_payload)
except Exception as e:
print(f"Error getting LLM decision for {data_payload.get('symbol', 'unknown')}: {e}")
return local_analyze_opportunity(data_payload)
def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str: return None
decision_data = json.loads(json_str)
required_fields = ['action', 'reasoning', 'risk_assessment', 'trade_type', 'stop_loss', 'take_profit', 'expected_target_minutes', 'confidence_level']
if not validate_required_fields(decision_data, required_fields): return None
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown': decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"Error parsing LLM response for {symbol}: {e}")
return None
async def _get_pattern_analysis(self, data_payload):
try:
symbol = data_payload['symbol']
if 'raw_ohlcv' in data_payload and '1h' in data_payload['raw_ohlcv']:
ohlcv_data = data_payload['raw_ohlcv']['1h']
if ohlcv_data and len(ohlcv_data) >= 20: return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
if 'advanced_indicators' in data_payload and '1h' in data_payload['advanced_indicators']:
ohlcv_data = data_payload['advanced_indicators']['1h']
if ohlcv_data and len(ohlcv_data) >= 20: return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
return None
except Exception as e:
print(f"Pattern analysis failed for {data_payload.get('symbol')}: {e}")
return None
def _create_enhanced_trading_prompt(self, payload: dict, news_text: str, pattern_analysis: dict) -> str:
symbol = payload.get('symbol', 'N/A')
current_price = payload.get('current_price', 'N/A')
reasons = payload.get('reasons_for_candidacy', [])
sentiment_data = payload.get('sentiment_data', {})
advanced_indicators = payload.get('advanced_indicators', {})
strategy_scores = payload.get('strategy_scores', {})
recommended_strategy = payload.get('recommended_strategy', 'N/A')
target_strategy = payload.get('target_strategy', 'GENERIC')
final_score = payload.get('final_score', 'N/A')
enhanced_final_score = payload.get('enhanced_final_score', 'N/A')
whale_data = payload.get('whale_data', {})
final_score_display = f"{final_score:.2f}" if isinstance(final_score, (int, float)) else str(final_score)
enhanced_score_display = f"{enhanced_final_score:.2f}" if isinstance(enhanced_final_score, (int, float)) else str(enhanced_final_score)
indicators_summary = format_technical_indicators(advanced_indicators)
strategies_summary = format_strategy_scores(strategy_scores, recommended_strategy)
pattern_summary = self._format_pattern_analysis(pattern_analysis)
whale_analysis_section = self._format_whale_analysis(sentiment_data.get('general_whale_activity', {}), whale_data, symbol)
prompt = f"""
TRADING ANALYSIS FOR {symbol}
STRATEGY: {target_strategy}
Current Price: {current_price}
System Score: {final_score_display}
Enhanced Score: {enhanced_score_display}
CHART PATTERN ANALYSIS:
{pattern_summary}
TECHNICAL INDICATORS:
{indicators_summary}
STRATEGY ANALYSIS:
{strategies_summary}
MARKET CONTEXT:
- BTC Trend: {sentiment_data.get('btc_sentiment', 'N/A')}
- Fear & Greed: {sentiment_data.get('fear_and_greed_index', 'N/A')}
WHALE ANALYSIS:
{whale_analysis_section}
NEWS:
{news_text}
OUTPUT (JSON):
{{
"action": "BUY/SELL/HOLD",
"reasoning": "Detailed explanation",
"risk_assessment": "Risk analysis",
"trade_type": "LONG/SHORT",
"stop_loss": 0.0000,
"take_profit": 0.0000,
"expected_target_minutes": 15,
"confidence_level": 0.85,
"strategy": "{target_strategy}",
"pattern_influence": "Pattern influence description"
}}
"""
return prompt
def _format_pattern_analysis(self, pattern_analysis):
if not pattern_analysis: return "No clear patterns detected"
confidence = pattern_analysis.get('pattern_confidence', 0)
pattern_name = pattern_analysis.get('pattern_detected', 'unknown')
analysis_lines = [f"Pattern: {pattern_name}", f"Confidence: {confidence:.1%}", f"Predicted Move: {pattern_analysis.get('predicted_direction', 'N/A')}", f"Analysis: {pattern_analysis.get('pattern_analysis', 'No detailed analysis')}"]
return "\n".join(analysis_lines)
def _format_whale_analysis(self, general_whale_activity, symbol_whale_data, symbol):
from sentiment_news import SentimentAnalyzer
temp_analyzer = SentimentAnalyzer(None)
return temp_analyzer.format_whale_analysis(general_whale_activity, symbol_whale_data, symbol)
async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
try:
symbol = trade_data['symbol']
original_strategy = trade_data.get('strategy', 'GENERIC')
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
pattern_analysis = await self._get_pattern_analysis(processed_data)
prompt = self._create_re_analysis_prompt(trade_data, processed_data, news_text, pattern_analysis)
async with self.semaphore: response = await self._call_llm(prompt)
re_analysis_dict = self._parse_re_analysis_response(response, original_strategy, symbol)
if re_analysis_dict:
re_analysis_dict['model_source'] = self.model_name
return re_analysis_dict
else: return local_re_analyze_trade(trade_data, processed_data)
except Exception as e:
print(f"Error in LLM re-analysis: {e}")
return local_re_analyze_trade(trade_data, processed_data)
def _parse_re_analysis_response(self, response_text: str, fallback_strategy: str, symbol: str) -> dict:
try:
json_str = parse_json_from_response(response_text)
if not json_str: return None
decision_data = json.loads(json_str)
strategy_value = decision_data.get('strategy')
if not strategy_value or strategy_value == 'unknown': decision_data['strategy'] = fallback_strategy
return decision_data
except Exception as e:
print(f"Error parsing re-analysis response for {symbol}: {e}")
return None
def _create_re_analysis_prompt(self, trade_data: dict, processed_data: dict, news_text: str, pattern_analysis: dict) -> str:
symbol = trade_data.get('symbol', 'N/A')
entry_price = trade_data.get('entry_price', 'N/A')
current_price = processed_data.get('current_price', 'N/A')
strategy = trade_data.get('strategy', 'GENERIC')
try: price_change = ((current_price - entry_price) / entry_price) * 100; price_change_display = f"{price_change:+.2f}%"
except (TypeError, ZeroDivisionError): price_change_display = "N/A"
indicators_summary = format_technical_indicators(processed_data.get('advanced_indicators', {}))
pattern_summary = self._format_pattern_analysis(pattern_analysis)
whale_analysis_section = self._format_whale_analysis(processed_data.get('sentiment_data', {}).get('general_whale_activity', {}), processed_data.get('whale_data', {}), symbol)
prompt = f"""
TRADE RE-ANALYSIS FOR {symbol}
TRADE CONTEXT:
- Strategy: {strategy}
- Entry Price: {entry_price}
- Current Price: {current_price}
- Performance: {price_change_display}
UPDATED PATTERN ANALYSIS:
{pattern_summary}
UPDATED TECHNICALS:
{indicators_summary}
UPDATED WHALE DATA:
{whale_analysis_section}
LATEST NEWS:
{news_text}
OUTPUT (JSON):
{{
"action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
"reasoning": "Justification",
"new_stop_loss": 0.0000,
"new_take_profit": 0.0000,
"new_expected_minutes": 15,
"confidence_level": 0.85,
"strategy": "{strategy}",
"pattern_influence_reanalysis": "Pattern influence description"
}}
"""
return prompt
@_rate_limit_nvidia_api
async def _call_llm(self, prompt: str) -> str:
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
seed=42
)
return response.choices[0].message.content
except (RateLimitError, APITimeoutError) as e:
print(f"LLM API Error: {e}. Retrying...")
raise
except Exception as e:
print(f"Unexpected LLM API error: {e}")
raise |