Spaces:
Running
Running
| # data_manager.py | |
| import os | |
| import asyncio | |
| import httpx | |
| import traceback | |
| import time | |
| from datetime import datetime | |
| import ccxt | |
| import numpy as np | |
| import logging | |
| from typing import List, Dict, Any | |
| logging.getLogger("httpx").setLevel(logging.WARNING) | |
| logging.getLogger("httpcore").setLevel(logging.WARNING) | |
| class DataManager: | |
| def __init__(self, contracts_db, whale_monitor): | |
| self.contracts_db = contracts_db or {} | |
| self.whale_monitor = whale_monitor | |
| try: | |
| self.exchange = ccxt.kucoin({ | |
| 'sandbox': False, | |
| 'enableRateLimit': True, | |
| 'timeout': 30000, | |
| 'verbose': False, | |
| }) | |
| print("✅ تم تهيئة اتصال KuCoin بنجاح") | |
| except Exception as e: | |
| print(f"❌ فشل تهيئة اتصال KuCoin: {e}") | |
| self.exchange = None | |
| self.http_client = None | |
| self.market_cache = {} | |
| self.last_market_load = None | |
| async def initialize(self): | |
| self.http_client = httpx.AsyncClient(timeout=30.0) | |
| await self._load_markets() | |
| print("✅ DataManager initialized - Efficient Volume-Based Screening") | |
| async def _load_markets(self): | |
| try: | |
| if not self.exchange: | |
| return | |
| print("🔄 جلب أحدث بيانات الأسواق من KuCoin...") | |
| self.exchange.load_markets() | |
| self.market_cache = self.exchange.markets | |
| self.last_market_load = datetime.now() | |
| print(f"✅ تم تحميل {len(self.market_cache)} سوق من KuCoin") | |
| except Exception as e: | |
| print(f"❌ فشل تحميل بيانات الأسواق: {e}") | |
| async def close(self): | |
| if self.http_client: | |
| await self.http_client.aclose() | |
| async def get_market_context_async(self): | |
| """جلب سياق السوق الأساسي فقط""" | |
| try: | |
| sentiment_data = await self.get_sentiment_safe_async() | |
| price_data = await self._get_prices_with_fallback() | |
| bitcoin_price = price_data.get('bitcoin') | |
| ethereum_price = price_data.get('ethereum') | |
| market_context = { | |
| 'timestamp': datetime.now().isoformat(), | |
| 'bitcoin_price_usd': bitcoin_price, | |
| 'ethereum_price_usd': ethereum_price, | |
| 'fear_and_greed_index': sentiment_data.get('feargreed_value') if sentiment_data else None, | |
| 'sentiment_class': sentiment_data.get('feargreed_class') if sentiment_data else 'NEUTRAL', | |
| 'market_trend': self._determine_market_trend(bitcoin_price, sentiment_data), | |
| 'btc_sentiment': self._get_btc_sentiment(bitcoin_price), | |
| 'data_quality': 'HIGH' if bitcoin_price and ethereum_price else 'LOW' | |
| } | |
| return market_context | |
| except Exception as e: | |
| return self._get_minimal_market_context() | |
| async def get_sentiment_safe_async(self): | |
| """جلب بيانات المشاعر""" | |
| try: | |
| async with httpx.AsyncClient(timeout=10) as client: | |
| response = await client.get("https://api.alternative.me/fng/") | |
| response.raise_for_status() | |
| data = response.json() | |
| if 'data' not in data or not data['data']: | |
| raise ValueError("بيانات المشاعر غير متوفرة") | |
| latest_data = data['data'][0] | |
| return { | |
| "feargreed_value": int(latest_data['value']), | |
| "feargreed_class": latest_data['value_classification'], | |
| "source": "alternative.me", | |
| "timestamp": datetime.now().isoformat() | |
| } | |
| except Exception as e: | |
| return None | |
| def _determine_market_trend(self, bitcoin_price, sentiment_data): | |
| """تحديد اتجاه السوق""" | |
| if bitcoin_price is None: | |
| return "UNKNOWN" | |
| score = 0 | |
| if bitcoin_price > 60000: | |
| score += 1 | |
| elif bitcoin_price < 55000: | |
| score -= 1 | |
| if sentiment_data and sentiment_data.get('feargreed_value') is not None: | |
| fear_greed = sentiment_data.get('feargreed_value') | |
| if fear_greed > 60: | |
| score += 1 | |
| elif fear_greed < 40: | |
| score -= 1 | |
| if score >= 1: | |
| return "bull_market" | |
| elif score <= -1: | |
| return "bear_market" | |
| else: | |
| return "sideways_market" | |
| def _get_btc_sentiment(self, bitcoin_price): | |
| if bitcoin_price is None: | |
| return 'UNKNOWN' | |
| elif bitcoin_price > 60000: | |
| return 'BULLISH' | |
| elif bitcoin_price < 55000: | |
| return 'BEARISH' | |
| else: | |
| return 'NEUTRAL' | |
| async def _get_prices_with_fallback(self): | |
| """جلب أسعار البيتكوين والإيثيريوم""" | |
| try: | |
| prices = await self._get_prices_from_kucoin_safe() | |
| if prices.get('bitcoin') and prices.get('ethereum'): | |
| return prices | |
| return await self._get_prices_from_coingecko() | |
| except Exception as e: | |
| return {'bitcoin': None, 'ethereum': None} | |
| async def _get_prices_from_kucoin_safe(self): | |
| if not self.exchange: | |
| return {'bitcoin': None, 'ethereum': None} | |
| try: | |
| prices = {'bitcoin': None, 'ethereum': None} | |
| btc_ticker = self.exchange.fetch_ticker('BTC/USDT') | |
| btc_price = float(btc_ticker.get('last', 0)) if btc_ticker.get('last') else None | |
| if btc_price and btc_price > 0: | |
| prices['bitcoin'] = btc_price | |
| eth_ticker = self.exchange.fetch_ticker('ETH/USDT') | |
| eth_price = float(eth_ticker.get('last', 0)) if eth_ticker.get('last') else None | |
| if eth_price and eth_price > 0: | |
| prices['ethereum'] = eth_price | |
| return prices | |
| except Exception as e: | |
| print(f"⚠️ فشل جلب الأسعار من KuCoin: {e}") | |
| return {'bitcoin': None, 'ethereum': None} | |
| async def _get_prices_from_coingecko(self): | |
| """الاحتياطي: جلب الأسعار من CoinGecko""" | |
| try: | |
| await asyncio.sleep(0.5) | |
| url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin,ethereum&vs_currencies=usd" | |
| headers = { | |
| 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36', | |
| 'Accept': 'application/json' | |
| } | |
| async with httpx.AsyncClient(headers=headers) as client: | |
| response = await client.get(url, timeout=10) | |
| if response.status_code == 429: | |
| await asyncio.sleep(2) | |
| response = await client.get(url, timeout=10) | |
| response.raise_for_status() | |
| data = response.json() | |
| btc_price = data.get('bitcoin', {}).get('usd') | |
| eth_price = data.get('ethereum', {}).get('usd') | |
| if btc_price and eth_price: | |
| return {'bitcoin': btc_price, 'ethereum': eth_price} | |
| else: | |
| return {'bitcoin': None, 'ethereum': None} | |
| except Exception as e: | |
| print(f"⚠️ فشل جلب الأسعار من CoinGecko: {e}") | |
| return {'bitcoin': None, 'ethereum': None} | |
| def _get_minimal_market_context(self): | |
| """سياق سوق بدائي عند الفشل""" | |
| return { | |
| 'timestamp': datetime.now().isoformat(), | |
| 'data_available': False, | |
| 'market_trend': 'UNKNOWN', | |
| 'btc_sentiment': 'UNKNOWN', | |
| 'data_quality': 'LOW' | |
| } | |
| async def layer1_rapid_screening(self) -> List[Dict[str, Any]]: | |
| """ | |
| الطبقة 1: فحص سريع - جلب أفضل 200 عملة حسب الحجم مباشرة | |
| """ | |
| print("📊 الطبقة 1: جلب أفضل 200 عملة حسب حجم التداول...") | |
| # المحاولة 1: الطريقة المثلى - استخدام fetch_tickers | |
| volume_data = await self._get_volume_data_optimal() | |
| if not volume_data: | |
| # المحاولة 2: الطريقة البديلة - استخدام API المباشر | |
| volume_data = await self._get_volume_data_direct_api() | |
| if not volume_data: | |
| # المحاولة 3: الطريقة التقليدية (الاحتياطية) | |
| volume_data = await self._get_volume_data_traditional() | |
| if not volume_data: | |
| print("❌ فشل جميع محاولات جلب بيانات الأحجام") | |
| return [] | |
| # أخذ أفضل 200 عملة حسب الحجم فقط | |
| volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True) | |
| top_200_by_volume = volume_data[:200] | |
| print(f"✅ تم اختيار أفضل {len(top_200_by_volume)} عملة حسب الحجم") | |
| # المرحلة 2: تطبيق المؤشرات الأخرى على الـ200 فقط | |
| final_candidates = await self._apply_advanced_indicators(top_200_by_volume) | |
| print(f"🎯 تم تحليل {len(final_candidates)} عملة للطبقة 2") | |
| # عرض أفضل 15 عملة | |
| print("🏆 أفضل 15 عملة من الطبقة 1:") | |
| for i, candidate in enumerate(final_candidates[:15]): | |
| score = candidate.get('layer1_score', 0) | |
| volume = candidate.get('dollar_volume', 0) | |
| change = candidate.get('price_change_24h', 0) | |
| print(f" {i+1:2d}. {candidate['symbol']}: {score:.3f} | ${volume:>10,.0f} | {change:>+6.1f}%") | |
| return final_candidates | |
| async def _get_volume_data_optimal(self) -> List[Dict[str, Any]]: | |
| """الطريقة المثلى: استخدام fetch_tickers لجميع البيانات مرة واحدة""" | |
| try: | |
| if not self.exchange: | |
| return [] | |
| tickers = self.exchange.fetch_tickers() | |
| volume_data = [] | |
| processed = 0 | |
| for symbol, ticker in tickers.items(): | |
| # تصفية أزواج USDT النشطة فقط | |
| if not symbol.endswith('/USDT'): | |
| continue | |
| if not ticker.get('active', True): | |
| continue | |
| # استخدام quoteVolume (الحجم بالدولار) إذا متوفر | |
| current_price = ticker.get('last', 0) | |
| quote_volume = ticker.get('quoteVolume', 0) | |
| # ✅ الإصلاح: التحقق من القيم قبل العمليات الحسابية | |
| if current_price is None or current_price <= 0: | |
| continue | |
| if quote_volume is not None and quote_volume > 0: | |
| dollar_volume = quote_volume | |
| else: | |
| # fallback: baseVolume * السعر | |
| base_volume = ticker.get('baseVolume', 0) | |
| if base_volume is None: | |
| continue | |
| dollar_volume = base_volume * current_price | |
| # ✅ الإصلاح: التحقق من أن dollar_volume قيمة صالحة | |
| if dollar_volume is None or dollar_volume < 50000: # أقل من 50K دولار | |
| continue | |
| # ✅ الإصلاح: التحقق من أن price_change_24h قيمة صالحة | |
| price_change_24h = (ticker.get('percentage', 0) or 0) * 100 | |
| if price_change_24h is None: | |
| price_change_24h = 0 | |
| volume_data.append({ | |
| 'symbol': symbol, | |
| 'dollar_volume': dollar_volume, | |
| 'current_price': current_price, | |
| 'volume_24h': ticker.get('baseVolume', 0) or 0, | |
| 'price_change_24h': price_change_24h | |
| }) | |
| processed += 1 | |
| print(f"✅ تم معالجة {processed} عملة في الطريقة المثلى") | |
| return volume_data | |
| except Exception as e: | |
| print(f"❌ خطأ في جلب بيانات الحجم المثلى: {e}") | |
| traceback.print_exc() | |
| return [] | |
| async def _get_volume_data_direct_api(self) -> List[Dict[str, Any]]: | |
| """الطريقة الثانية: استخدام KuCoin API مباشرة""" | |
| try: | |
| url = "https://api.kucoin.com/api/v1/market/allTickers" | |
| async with httpx.AsyncClient(timeout=15) as client: | |
| response = await client.get(url) | |
| response.raise_for_status() | |
| data = response.json() | |
| if data.get('code') != '200000': | |
| raise ValueError(f"استجابة API غير متوقعة: {data.get('code')}") | |
| tickers = data['data']['ticker'] | |
| volume_data = [] | |
| for ticker in tickers: | |
| symbol = ticker['symbol'] | |
| # تصفية أزواج USDT فقط | |
| if not symbol.endswith('USDT'): | |
| continue | |
| # تحويل الرمز للتنسيق القياسي (BTC-USDT → BTC/USDT) | |
| formatted_symbol = symbol.replace('-', '/') | |
| try: | |
| # ✅ الإصلاح: التحقق من القيم قبل التحويل | |
| vol_value = ticker.get('volValue') | |
| last_price = ticker.get('last') | |
| change_rate = ticker.get('changeRate') | |
| vol = ticker.get('vol') | |
| if vol_value is None or last_price is None or change_rate is None or vol is None: | |
| continue | |
| # ✅ الإصلاح: استخدام القيم الافتراضية للتحويل | |
| dollar_volume = float(vol_value) if vol_value else 0 | |
| current_price = float(last_price) if last_price else 0 | |
| price_change = (float(change_rate) * 100) if change_rate else 0 | |
| volume_24h = float(vol) if vol else 0 | |
| if dollar_volume >= 50000 and current_price > 0: | |
| volume_data.append({ | |
| 'symbol': formatted_symbol, | |
| 'dollar_volume': dollar_volume, | |
| 'current_price': current_price, | |
| 'volume_24h': volume_24h, | |
| 'price_change_24h': price_change | |
| }) | |
| except (ValueError, TypeError, KeyError) as e: | |
| continue | |
| print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المباشرة") | |
| return volume_data | |
| except Exception as e: | |
| print(f"❌ خطأ في جلب بيانات الحجم المباشر: {e}") | |
| traceback.print_exc() | |
| return [] | |
| async def _get_volume_data_traditional(self) -> List[Dict[str, Any]]: | |
| """الطريقة التقليدية: جلب كل رمز على حدة (الاحتياطي)""" | |
| try: | |
| if not self.exchange or not self.market_cache: | |
| return [] | |
| usdt_symbols = [ | |
| symbol for symbol in self.market_cache.keys() | |
| if symbol.endswith('/USDT') and self.market_cache[symbol].get('active', False) | |
| ] | |
| volume_data = [] | |
| processed = 0 | |
| # معالجة دفعات لتجنب rate limits | |
| batch_size = 20 # تقليل حجم الدفعة لتحسين الاستقرار | |
| for i in range(0, len(usdt_symbols), batch_size): | |
| batch = usdt_symbols[i:i + batch_size] | |
| batch_tasks = [self._process_single_symbol(sym) for sym in batch] | |
| batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True) | |
| for result in batch_results: | |
| if isinstance(result, dict): | |
| volume_data.append(result) | |
| processed += len(batch) | |
| # انتظار قصير بين الدفعات | |
| if i + batch_size < len(usdt_symbols): | |
| await asyncio.sleep(1) | |
| print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة التقليدية") | |
| return volume_data | |
| except Exception as e: | |
| print(f"❌ خطأ في جلب بيانات الحجم التقليدية: {e}") | |
| traceback.print_exc() | |
| return [] | |
| async def _process_single_symbol(self, symbol: str) -> Dict[str, Any]: | |
| """معالجة رمز واحد لجلب بيانات الحجم""" | |
| try: | |
| ticker = self.exchange.fetch_ticker(symbol) | |
| if not ticker: | |
| return None | |
| current_price = ticker.get('last', 0) | |
| quote_volume = ticker.get('quoteVolume', 0) | |
| # ✅ الإصلاح: التحقق من القيم قبل العمليات الحسابية | |
| if current_price is None or current_price <= 0: | |
| return None | |
| if quote_volume is not None and quote_volume > 0: | |
| dollar_volume = quote_volume | |
| else: | |
| base_volume = ticker.get('baseVolume', 0) | |
| if base_volume is None: | |
| return None | |
| dollar_volume = base_volume * current_price | |
| if dollar_volume is None or dollar_volume < 50000: | |
| return None | |
| # ✅ الإصلاح: التحقق من أن price_change_24h قيمة صالحة | |
| price_change_24h = (ticker.get('percentage', 0) or 0) * 100 | |
| if price_change_24h is None: | |
| price_change_24h = 0 | |
| return { | |
| 'symbol': symbol, | |
| 'dollar_volume': dollar_volume, | |
| 'current_price': current_price, | |
| 'volume_24h': ticker.get('baseVolume', 0) or 0, | |
| 'price_change_24h': price_change_24h | |
| } | |
| except Exception: | |
| return None | |
| async def _apply_advanced_indicators(self, volume_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
| """تطبيق المؤشرات المتقدمة على أفضل العملات حسب الحجم""" | |
| candidates = [] | |
| for i, symbol_data in enumerate(volume_data): | |
| try: | |
| symbol = symbol_data['symbol'] | |
| # جلب بيانات إضافية للرمز | |
| detailed_data = await self._get_detailed_symbol_data(symbol) | |
| if not detailed_data: | |
| continue | |
| # دمج البيانات | |
| symbol_data.update(detailed_data) | |
| # حساب الدرجة النهائية | |
| score = self._calculate_advanced_score(symbol_data) | |
| symbol_data['layer1_score'] = score | |
| candidates.append(symbol_data) | |
| except Exception as e: | |
| continue | |
| # ترتيب المرشحين حسب الدرجة النهائية | |
| candidates.sort(key=lambda x: x.get('layer1_score', 0), reverse=True) | |
| return candidates | |
| async def _get_detailed_symbol_data(self, symbol: str) -> Dict[str, Any]: | |
| """جلب بيانات تفصيلية للرمز""" | |
| try: | |
| ticker = self.exchange.fetch_ticker(symbol) | |
| if not ticker: | |
| return None | |
| current_price = ticker.get('last', 0) | |
| high_24h = ticker.get('high', 0) | |
| low_24h = ticker.get('low', 0) | |
| open_price = ticker.get('open', 0) | |
| price_change_24h = (ticker.get('percentage', 0) or 0) * 100 | |
| # ✅ الإصلاح: استخدام القيم الافتراضية للتحويل | |
| current_price = current_price or 0 | |
| high_24h = high_24h or 0 | |
| low_24h = low_24h or 0 | |
| open_price = open_price or 0 | |
| price_change_24h = price_change_24h or 0 | |
| # حساب المؤشرات المتقدمة | |
| volatility = self._calculate_volatility(high_24h, low_24h, current_price) | |
| price_strength = self._calculate_price_strength(current_price, open_price, price_change_24h) | |
| momentum = self._calculate_momentum(price_change_24h) | |
| return { | |
| 'price_change_24h': price_change_24h, | |
| 'high_24h': high_24h, | |
| 'low_24h': low_24h, | |
| 'open_price': open_price, | |
| 'volatility': volatility, | |
| 'price_strength': price_strength, | |
| 'momentum': momentum, | |
| 'reasons': [] | |
| } | |
| except Exception as e: | |
| return None | |
| def _calculate_advanced_score(self, symbol_data: Dict[str, Any]) -> float: | |
| """حساب درجة متقدمة تجمع بين الحجم والمؤشرات الأخرى""" | |
| dollar_volume = symbol_data.get('dollar_volume', 0) | |
| price_change = symbol_data.get('price_change_24h', 0) | |
| volatility = symbol_data.get('volatility', 0) | |
| price_strength = symbol_data.get('price_strength', 0) | |
| momentum = symbol_data.get('momentum', 0) | |
| # 1. درجة الحجم (40%) - الأهم | |
| volume_score = self._calculate_volume_score(dollar_volume) | |
| # 2. درجة الزخم (25%) | |
| momentum_score = momentum | |
| # 3. درجة التقلب (20%) | |
| volatility_score = self._calculate_volatility_score(volatility) | |
| # 4. درجة قوة السعر (15%) | |
| strength_score = price_strength | |
| # الدرجة النهائية | |
| final_score = ( | |
| volume_score * 0.40 + | |
| momentum_score * 0.25 + | |
| volatility_score * 0.20 + | |
| strength_score * 0.15 | |
| ) | |
| # تحديث أسباب الترشيح | |
| reasons = [] | |
| if volume_score >= 0.7: | |
| reasons.append('high_volume') | |
| if momentum_score >= 0.7: | |
| reasons.append('strong_momentum') | |
| if volatility_score >= 0.7: | |
| reasons.append('good_volatility') | |
| symbol_data['reasons'] = reasons | |
| return final_score | |
| def _calculate_volume_score(self, dollar_volume: float) -> float: | |
| """حساب درجة الحجم""" | |
| if dollar_volume >= 10000000: # 10M+ | |
| return 1.0 | |
| elif dollar_volume >= 5000000: # 5M+ | |
| return 0.9 | |
| elif dollar_volume >= 2000000: # 2M+ | |
| return 0.8 | |
| elif dollar_volume >= 1000000: # 1M+ | |
| return 0.7 | |
| elif dollar_volume >= 500000: # 500K+ | |
| return 0.6 | |
| elif dollar_volume >= 250000: # 250K+ | |
| return 0.5 | |
| elif dollar_volume >= 100000: # 100K+ | |
| return 0.4 | |
| else: | |
| return 0.3 | |
| def _calculate_volatility(self, high_24h: float, low_24h: float, current_price: float) -> float: | |
| """حساب التقلب""" | |
| if current_price == 0: | |
| return 0 | |
| return (high_24h - low_24h) / current_price | |
| def _calculate_volatility_score(self, volatility: float) -> float: | |
| """حساب درجة التقلب""" | |
| if 0.02 <= volatility <= 0.15: # تقلب مثالي 2%-15% | |
| return 1.0 | |
| elif 0.01 <= volatility <= 0.20: # مقبول 1%-20% | |
| return 0.8 | |
| elif volatility <= 0.01: # قليل جداً | |
| return 0.4 | |
| elif volatility > 0.20: # عالي جداً | |
| return 0.3 | |
| else: | |
| return 0.5 | |
| def _calculate_price_strength(self, current_price: float, open_price: float, price_change: float) -> float: | |
| """حساب قوة السعر""" | |
| if open_price == 0: | |
| return 0.5 | |
| # قوة السعر تعتمد على المسافة من سعر الافتتاح ونسبة التغير | |
| distance_from_open = abs(current_price - open_price) / open_price | |
| change_strength = min(abs(price_change) / 50, 1.0) | |
| return (distance_from_open * 0.6 + change_strength * 0.4) | |
| def _calculate_momentum(self, price_change: float) -> float: | |
| """حساب الزخم""" | |
| if price_change >= 15: # +15%+ | |
| return 1.0 | |
| elif price_change >= 10: # +10%+ | |
| return 0.9 | |
| elif price_change >= 5: # +5%+ | |
| return 0.8 | |
| elif price_change >= 2: # +2%+ | |
| return 0.7 | |
| elif price_change >= 0: # موجب | |
| return 0.6 | |
| elif price_change >= -5: # حتى -5% | |
| return 0.5 | |
| elif price_change >= -10: # حتى -10% | |
| return 0.4 | |
| else: # أكثر من -10% | |
| return 0.3 | |
| # 🔴 --- بدء التعديل الجوهري --- 🔴 | |
| # تم تعديل هذه الدالة لتعمل كـ "منتج" (Producer) يضخ البيانات في طابور | |
| async def stream_ohlcv_data(self, symbols: List[str], queue: asyncio.Queue): | |
| """ | |
| (معدلة) جلب بيانات OHLCV بشكل متدفق وإرسالها إلى طابور | |
| """ | |
| print(f"📊 بدء تدفق بيانات OHLCV لـ {len(symbols)} عملة...") | |
| batch_size = 15 | |
| batches = [symbols[i:i + batch_size] for i in range(0, len(symbols), batch_size)] | |
| total_successful = 0 | |
| for batch_num, batch in enumerate(batches): | |
| print(f" 🔄 [المنتج] جلب الدفعة {batch_num + 1}/{len(batches)} ({len(batch)} عملة)...") | |
| batch_tasks = [] | |
| for symbol in batch: | |
| task = asyncio.create_task(self._fetch_complete_ohlcv_parallel(symbol)) | |
| batch_tasks.append(task) | |
| batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True) | |
| # معالجة نتائج الدفعة | |
| successful_data_for_batch = [] | |
| successful_count = 0 | |
| for i, result in enumerate(batch_results): | |
| symbol = batch[i] | |
| if isinstance(result, Exception): | |
| print(f" ❌ [المنتج] فشل جلب {symbol}: {result}") | |
| elif result is not None: | |
| successful_data_for_batch.append(result) | |
| successful_count += 1 | |
| timeframes_count = result.get('successful_timeframes', 0) | |
| print(f" ✅ [المنتج] {symbol}: {timeframes_count}/6 أطر زمنية") | |
| else: | |
| print(f" ⚠️ [المنتج] {symbol}: بيانات غير كافية، تم التجاهل") | |
| print(f" 📦 [المنتج] اكتملت الدفعة {batch_num + 1}: {successful_count}/{len(batch)} ناجحة") | |
| # 🔴 الإرسال إلى الطابور | |
| # نرسل فقط إذا كانت هناك بيانات ناجحة في الدفعة | |
| if successful_data_for_batch: | |
| try: | |
| await queue.put(successful_data_for_batch) | |
| print(f" 📬 [المنتج] تم إرسال {len(successful_data_for_batch)} عملة إلى طابور المعالجة") | |
| total_successful += len(successful_data_for_batch) | |
| except Exception as q_err: | |
| print(f" ❌ [المنتج] فشل إرسال الدفعة للطابور: {q_err}") | |
| # انتظار قصير بين الدفعات لتجنب rate limits | |
| if batch_num < len(batches) - 1: | |
| await asyncio.sleep(1) | |
| print(f"✅ [المنتج] اكتمل تدفق بيانات OHLCV. تم إرسال {total_successful} عملة للمعالجة.") | |
| # 🔴 --- START OF CHANGE --- 🔴 | |
| # (إرسال إشارة "None" لإنهاء المستهلك) | |
| try: | |
| await queue.put(None) | |
| print(" 📬 [المنتج] تم إرسال إشارة الإنهاء (None) إلى الطابور.") | |
| except Exception as q_err: | |
| print(f" ❌ [المنتج] فشل إرسال إشارة الإنهاء (None) للطابور: {q_err}") | |
| # 🔴 --- END OF CHANGE --- 🔴 | |
| # 🔴 --- نهاية التعديل الجوهري --- 🔴 | |
| async def _fetch_complete_ohlcv_parallel(self, symbol: str) -> Dict[str, Any]: | |
| """جلب بيانات OHLCV كاملة مع جميع الإطارات الزمنية بشكل متوازي""" | |
| try: | |
| ohlcv_data = {} | |
| # جلب 200 شمعة لكل إطار زمني مع تحسين التعامل مع الأخطاء | |
| timeframes = [ | |
| ('5m', 200), | |
| ('15m', 200), | |
| ('1h', 200), | |
| ('4h', 200), | |
| ('1d', 200), | |
| ('1w', 200), | |
| ] | |
| # إنشاء مهام لجميع الإطارات الزمنية بشكل متوازي | |
| timeframe_tasks = [] | |
| for timeframe, limit in timeframes: | |
| task = asyncio.create_task(self._fetch_single_timeframe_improved(symbol, timeframe, limit)) | |
| timeframe_tasks.append(task) | |
| # انتظار جميع المهام | |
| timeframe_results = await asyncio.gather(*timeframe_tasks, return_exceptions=True) | |
| # تحسين: قبول البيانات حتى لو كانت غير مكتملة | |
| successful_timeframes = 0 | |
| min_required_timeframes = 2 # تخفيف الشرط من 3 إلى 2 أطر زمنية | |
| # معالجة النتائج | |
| for i, (timeframe, limit) in enumerate(timeframes): | |
| result = timeframe_results[i] | |
| if isinstance(result, Exception): | |
| continue | |
| if result and len(result) >= 10: # تخفيف الشرط من 50 إلى 10 شموع | |
| ohlcv_data[timeframe] = result | |
| successful_timeframes += 1 | |
| # تحسين: قبول العملة إذا كان لديها عدد كافٍ من الأطر الزمنية | |
| if successful_timeframes >= min_required_timeframes and ohlcv_data: | |
| try: | |
| # ✅ الحصول على السعر الحالي مباشرة | |
| current_price = await self.get_latest_price_async(symbol) | |
| # ✅ الإصلاح: إذا لم نتمكن من جلب السعر، نستخدم آخر سعر إغلاق | |
| if current_price is None: | |
| # البحث عن آخر سعر إغلاق من بيانات OHLCV | |
| for timeframe_data in ohlcv_data.values(): | |
| if timeframe_data and len(timeframe_data) > 0: | |
| last_candle = timeframe_data[-1] | |
| if len(last_candle) >= 5: | |
| current_price = last_candle[4] # سعر الإغلاق | |
| break | |
| if current_price is None: | |
| print(f"❌ فشل جلب السعر لـ {symbol} من جميع المصادر") | |
| return None | |
| result_data = { | |
| 'symbol': symbol, | |
| 'ohlcv': ohlcv_data, | |
| 'raw_ohlcv': ohlcv_data, # ✅ إضافة البيانات الخام مباشرة | |
| 'current_price': current_price, | |
| 'timestamp': datetime.now().isoformat(), | |
| 'candles_count': {tf: len(data) for tf, data in ohlcv_data.items()}, | |
| 'successful_timeframes': successful_timeframes | |
| } | |
| return result_data | |
| except Exception as price_error: | |
| print(f"❌ فشل جلب السعر لـ {symbol}: {price_error}") | |
| return None | |
| else: | |
| return None | |
| except Exception as e: | |
| print(f"❌ خطأ في جلب بيانات OHLCV لـ {symbol}: {e}") | |
| return None | |
| async def _fetch_single_timeframe_improved(self, symbol: str, timeframe: str, limit: int): | |
| """جلب بيانات إطار زمني واحد مع تحسين التعامل مع الأخطاء""" | |
| max_retries = 3 | |
| retry_delay = 2 | |
| for attempt in range(max_retries): | |
| try: | |
| ohlcv_data = self.exchange.fetch_ohlcv(symbol, timeframe, limit=limit) | |
| if ohlcv_data and len(ohlcv_data) > 0: | |
| return ohlcv_data | |
| else: | |
| return [] | |
| except Exception as e: | |
| if attempt < max_retries - 1: | |
| await asyncio.sleep(retry_delay * (attempt + 1)) | |
| else: | |
| return [] | |
| async def get_latest_price_async(self, symbol): | |
| """جلب السعر الحالي لعملة محددة - الإصلاح الرئيسي هنا""" | |
| try: | |
| if not self.exchange: | |
| print(f"❌ Exchange غير مهيأ لـ {symbol}") | |
| return None | |
| # ✅ الإصلاح الرئيسي: استخدام fetch_ticker مباشرة بدون asyncio.create_task | |
| # التأكد من أن symbol صالح للاستخدام | |
| if not symbol or '/' not in symbol: | |
| print(f"❌ رمز غير صالح: {symbol}") | |
| return None | |
| # ✅ الإصلاح: استخدام fetch_ticker بشكل متزامن (ليست async) | |
| ticker = self.exchange.fetch_ticker(symbol) | |
| if not ticker: | |
| print(f"❌ لم يتم العثور على ticker لـ {symbol}") | |
| return None | |
| current_price = ticker.get('last') | |
| if current_price is None: | |
| print(f"❌ لا يوجد سعر حالي في ticker لـ {symbol}") | |
| return None | |
| return float(current_price) | |
| except Exception as e: | |
| print(f"❌ فشل جلب السعر من KuCoin لـ {symbol}: {e}") | |
| return None | |
| async def get_available_symbols(self): | |
| """الحصول على جميع الرموز المتاحة""" | |
| try: | |
| if not self.exchange: | |
| return [] | |
| if not self.market_cache: | |
| await self._load_markets() | |
| usdt_symbols = [ | |
| symbol for symbol in self.market_cache.keys() | |
| if symbol.endswith('/USDT') and self.market_cache[symbol].get('active', False) | |
| ] | |
| return usdt_symbols | |
| except Exception as e: | |
| return [] | |
| async def validate_symbol(self, symbol): | |
| """التحقق من صحة الرمز""" | |
| try: | |
| if not self.exchange: | |
| return False | |
| if not self.market_cache: | |
| await self._load_markets() | |
| return symbol in self.market_cache and self.market_cache[symbol].get('active', False) | |
| except Exception as e: | |
| return False | |
| # === الدوال الجديدة لدعم بيانات الحيتان === | |
| async def get_whale_data_for_symbol(self, symbol): | |
| """جلب بيانات الحيتان لعملة محددة""" | |
| try: | |
| if self.whale_monitor: | |
| whale_data = await self.whale_monitor.get_symbol_whale_activity(symbol) | |
| return whale_data | |
| else: | |
| return None | |
| except Exception as e: | |
| return None | |
| async def get_whale_trading_signal(self, symbol, whale_data, market_context): | |
| """جلب إشارة التداول بناءً على بيانات الحيتان""" | |
| try: | |
| if self.whale_monitor: | |
| return await self.whale_monitor.generate_whale_trading_signal(symbol, whale_data, market_context) | |
| else: | |
| return { | |
| 'action': 'HOLD', | |
| 'confidence': 0.3, | |
| 'reason': 'Whale monitor not available', | |
| 'source': 'whale_analysis' | |
| } | |
| except Exception as e: | |
| return { | |
| 'action': 'HOLD', | |
| 'confidence': 0.3, | |
| 'reason': f'Error: {str(e)}', | |
| 'source': 'whale_analysis' | |
| } | |
| print("✅ DataManager loaded - (FIXED: Added stream_ohlcv_data 'None' terminator)") |