Trad / app.py
Riy777's picture
Update app.py
b4b5d30
raw
history blame
35.3 kB
# app.py
import os
import traceback
import signal
import sys
import uvicorn
import asyncio
import json
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from datetime import datetime
from r2 import R2Service
from LLM import LLMService
from data_manager import DataManager
from ML import MLProcessor as FeatureProcessor
from learning_engine import LearningEngine
from sentiment_news import SentimentAnalyzer
from trade_manager import TradeManager
import state
from helpers import safe_float_conversion, _apply_patience_logic, local_analyze_opportunity, local_re_analyze_trade, validate_candidate_data_enhanced
r2_service_global = None
data_manager_global = None
llm_service_global = None
learning_engine_global = None
trade_manager_global = None
sentiment_analyzer_global = None
symbol_whale_monitor_global = None
class StateManager:
def __init__(self):
self.market_analysis_lock = asyncio.Lock()
self.trade_analysis_lock = asyncio.Lock()
self.initialization_complete = False
self.services_initialized = {
'r2_service': False,
'data_manager': False,
'llm_service': False,
'learning_engine': False,
'trade_manager': False,
'sentiment_analyzer': False,
'symbol_whale_monitor': False
}
async def wait_for_initialization(self, timeout=30):
start_time = time.time()
while not self.initialization_complete and (time.time() - start_time) < timeout:
await asyncio.sleep(1)
return self.initialization_complete
def set_service_initialized(self, service_name):
self.services_initialized[service_name] = True
if all(self.services_initialized.values()):
self.initialization_complete = True
state_manager = StateManager()
async def monitor_market_async():
"""مراقبة السوق بدون نظام الحيتان العام"""
global data_manager_global, sentiment_analyzer_global
if not await state_manager.wait_for_initialization():
print("❌ فشل تهيئة الخدمات - إيقاف مراقبة السوق")
return
while True:
try:
async with state_manager.market_analysis_lock:
market_context = await sentiment_analyzer_global.get_market_sentiment()
if not market_context:
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
continue
bitcoin_sentiment = market_context.get('btc_sentiment')
fear_greed_index = market_context.get('fear_and_greed_index')
should_halt_trading, halt_reason = False, ""
if bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30):
should_halt_trading, halt_reason = True, "ظروف سوق هابطة"
if should_halt_trading:
state.MARKET_STATE_OK = False
await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason})
else:
if not state.MARKET_STATE_OK:
print("✅ تحسنت ظروف السوق. استئناف العمليات العادية.")
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
except Exception as error:
print(f"❌ خطأ أثناء مراقبة السوق: {error}")
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
async def analyze_market_strategy(market_context):
"""تحليل استراتيجية السوق بدون اعتماد على الحيتان العامة"""
try:
prompt = f"Analyze current market conditions and determine trading strategy.\n\nMarket Data:\n- BTC Sentiment: {market_context.get('btc_sentiment')}\n- Fear & Greed Index: {market_context.get('fear_and_greed_index')}\n\nOutput JSON:\n{{\"primary_strategy\": \"STRATEGY_NAME\",\"reasoning\": \"Brief reasoning\",\"risk_tolerance\": 5,\"optimal_scan_count\": 100}}"
response = await llm_service_global._call_llm(prompt)
try:
from helpers import parse_json_from_response
json_str = parse_json_from_response(response)
strategy_data = json.loads(json_str)
except:
strategy_data = {
"primary_strategy": "GENERIC",
"reasoning": "Fallback strategy due to analysis error",
"risk_tolerance": 5,
"optimal_scan_count": 100
}
return strategy_data
except Exception as error:
print(f"❌ فشل تحليل استراتيجية السوق: {error}")
return {
"primary_strategy": "GENERIC",
"reasoning": "Fallback due to analysis error",
"risk_tolerance": 5,
"optimal_scan_count": 100
}
async def find_strategy_specific_candidates(strategy, scan_count):
"""البحث عن مرشحين متوافقين مع الاستراتيجية"""
try:
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
if not all_candidates:
return []
market_context = await data_manager_global.get_market_context_async()
if not market_context:
return []
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
processed_candidates = []
for candidate in all_candidates[:30]:
try:
symbol_with_reasons = [{'symbol': candidate['symbol'], 'reasons': candidate.get('reasons', [])}]
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
if ohlcv_data and ohlcv_data[0]:
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
if processed:
processed_candidates.append(processed)
except Exception as e:
print(f"❌ Failed to process {candidate.get('symbol')}: {e}")
if not processed_candidates:
return []
if strategy != 'GENERIC':
strategy_candidates = []
for candidate in processed_candidates:
base_scores = candidate.get('base_strategy_scores', {})
strategy_score = base_scores.get(strategy, 0)
if strategy_score > 0.2:
candidate['strategy_match_score'] = strategy_score
strategy_candidates.append(candidate)
sorted_candidates = sorted(strategy_candidates, key=lambda x: x.get('strategy_match_score', 0), reverse=True)
top_candidates = sorted_candidates[:15]
else:
sorted_candidates = sorted(processed_candidates, key=lambda x: x.get('enhanced_final_score', 0), reverse=True)
top_candidates = sorted_candidates[:15]
return top_candidates
except Exception as error:
print(f"❌ Advanced filtering failed: {error}")
return []
async def enhanced_llm_analysis_with_whale_data(candidate):
"""تحليل محسن يشمل بيانات حيتان للمرشحين النهائيين"""
global symbol_whale_monitor_global
try:
print(f"🧠 بدء التحليل المتقدم لـ {candidate['symbol']}...")
# 1. الحصول على تحليل النموذج الضخم الأساسي
llm_analysis = await llm_service_global.get_trading_decision(candidate)
if not llm_analysis:
print(f"❌ فشل التحليل الأساسي لـ {candidate['symbol']}")
return None
# 2. إضافة بيانات الحيتان للمرشحين النهائيين فقط
print(f"🐋 جلب بيانات الحيتان لـ {candidate['symbol']}...")
whale_analysis = await symbol_whale_monitor_global.get_symbol_whale_activity(
candidate['symbol'],
candidate.get('contract_address')
)
# 3. دمج النتائج
enhanced_analysis = {
**llm_analysis,
'whale_analysis': whale_analysis.get('llm_friendly_summary', {}),
'combined_confidence': await calculate_combined_confidence(
llm_analysis.get('confidence_level', 0.5),
whale_analysis.get('trading_signal', {}).get('confidence', 0.5)
),
'analysis_timestamp': datetime.now().isoformat(),
'analysis_source': 'enhanced_with_whale_data'
}
# 4. تطبيق قواعد السلامة بناء على نشاط الحيتان
if whale_analysis.get('trading_signal', {}).get('critical_alert'):
enhanced_analysis = apply_whale_safety_filters(enhanced_analysis, whale_analysis)
print(f"✅ اكتمل التحليل المتقدم لـ {candidate['symbol']}")
return enhanced_analysis
except Exception as error:
print(f"❌ خطأ في التحليل المتقدم لـ {candidate.get('symbol')}: {error}")
# العودة للتحليل الأساسي في حالة الخطأ
return await llm_service_global.get_trading_decision(candidate)
async def calculate_combined_confidence(llm_confidence, whale_confidence):
"""حساب الثقة المجمعة مع إعطاء وزن أكبر لبيانات الحيتان"""
combined = (llm_confidence * 0.4) + (whale_confidence * 0.6)
return min(combined, 0.95)
def apply_whale_safety_filters(analysis, whale_analysis):
"""تطبيق فلاتر السلامة بناء على نشاط الحيتان الحرج"""
whale_signal = whale_analysis.get('trading_signal', {})
if whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
if analysis.get('action') == 'BUY':
analysis.update({
'action': 'HOLD',
'reasoning': f"{analysis.get('reasoning', '')} | تصحيح بسبب نشاط الحيتان: {whale_signal.get('reason', '')}",
'confidence_level': analysis.get('confidence_level', 0.5) * 0.7
})
elif analysis.get('action') == 'HOLD':
analysis['confidence_level'] = analysis.get('confidence_level', 0.5) * 0.9
elif whale_signal.get('action') in ['STRONG_BUY', 'BUY']:
if analysis.get('action') == 'BUY':
analysis['confidence_level'] = min(analysis.get('confidence_level', 0.5) * 1.2, 0.95)
analysis['reasoning'] = f"{analysis.get('reasoning', '')} | تعزيز بسبب نشاط الحيتان الإيجابي"
return analysis
async def find_new_opportunities_async():
"""البحث عن فرص تداول جديدة مع دمج بيانات الحيتان للمرشحين النهائيين"""
try:
print("🎯 بدء البحث عن فرص تداول جديدة...")
await r2_service_global.save_system_logs_async({"opportunity_scan_started": True})
market_context = await data_manager_global.get_market_context_async()
if not market_context:
print("❌ فشل جلب سياق السوق")
return
strategy_decision = await analyze_market_strategy(market_context)
print(f"📊 استراتيجية السوق: {strategy_decision['primary_strategy']}")
high_potential_candidates = await find_strategy_specific_candidates(
strategy_decision['primary_strategy'],
strategy_decision.get('optimal_scan_count', 100)
)
if not high_potential_candidates:
print("⚠️ لم يتم العثور على مرشحين متوافقين مع الاستراتيجية، البحث عن مرشحين عامين")
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
if high_potential_candidates:
for candidate in high_potential_candidates:
candidate['target_strategy'] = 'GENERIC'
else:
print("❌ لم يتم العثور على أي مرشحين")
return
print(f"✅ تم العثور على {len(high_potential_candidates)} مرشح محتمل")
all_processed_candidates = []
CHUNK_SIZE = 5
for index in range(0, len(high_potential_candidates), CHUNK_SIZE):
chunk = high_potential_candidates[index:index+CHUNK_SIZE]
print(f"🔍 معالجة مجموعة {index//CHUNK_SIZE + 1} من {len(high_potential_candidates)//CHUNK_SIZE + 1}")
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
updated_market_context = await data_manager_global.get_market_context_async()
if not updated_market_context:
updated_market_context = market_context
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
processed_chunk = await asyncio.gather(*[
feature_processor.process_and_score_symbol_enhanced(data) for data in chunk_data
])
all_processed_candidates.extend([c for c in processed_chunk if c is not None])
print(f"✅ تم معالجة {len([c for c in processed_chunk if c is not None])} مرشح في هذه المجموعة")
await asyncio.sleep(1)
if not all_processed_candidates:
print("❌ فشل معالجة أي مرشح")
return
print(f"📊 إجمالي المرشحين المعالجين: {len(all_processed_candidates)}")
updated_market_context = await data_manager_global.get_market_context_async()
if not updated_market_context:
updated_market_context = market_context
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
OPPORTUNITY_COUNT = 10
top_candidates = feature_processor.filter_top_candidates(all_processed_candidates, OPPORTUNITY_COUNT)
print(f"🎖️ أفضل {len(top_candidates)} مرشح:")
for i, candidate in enumerate(top_candidates):
score = candidate.get('enhanced_final_score', 0)
print(f" {i+1}. {candidate['symbol']}: {score:.3f}")
await r2_service_global.save_candidates_data_async(
candidates_data=top_candidates,
reanalysis_data={
"strategy_used": strategy_decision,
"market_conditions": market_context
}
)
if not top_candidates:
print("❌ لا توجد مرشحات نهائية")
return
print("🤖 بدء تحليل النموذج الضخم المحسن للمرشحين...")
for candidate in top_candidates:
try:
if not validate_candidate_data_enhanced(candidate):
print(f"⚠️ تخطي {candidate['symbol']} - بيانات غير صالحة")
continue
print(f"🧠 تحليل متقدم لـ {candidate['symbol']}...")
# استخدام التحليل المحسن ببيانات الحيتان
llm_analysis_data = await enhanced_llm_analysis_with_whale_data(candidate)
if not llm_analysis_data:
print(f"⚠️ فشل التحليل المتقدم لـ {candidate['symbol']}")
continue
if llm_analysis_data.get('action') == "HOLD":
print(f"⏸️ النموذج يوصي بالانتظار لـ {candidate['symbol']}")
continue
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
final_strategy = llm_analysis_data.get('strategy')
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
if not final_strategy or final_strategy == 'unknown':
final_strategy = candidate_strategy
llm_analysis_data['strategy'] = final_strategy
await r2_service_global.save_system_logs_async({
"new_opportunity_found": True,
"symbol": candidate['symbol'],
"action": llm_analysis_data.get('action'),
"strategy": final_strategy,
"with_whale_analysis": True,
"combined_confidence": llm_analysis_data.get('combined_confidence', 0.5)
})
print(f"🎯 فرصة تداول مثبتة: {candidate['symbol']} - {llm_analysis_data.get('action')} - {final_strategy}")
print(f" 📊 الثقة المجمعة: {llm_analysis_data.get('combined_confidence', 0.5):.2f}")
return {
"symbol": candidate['symbol'],
"decision": llm_analysis_data,
"current_price": candidate['current_price'],
"strategy": final_strategy
}
except Exception as error:
print(f"❌ خطأ في التحليل المتقدم لـ {candidate.get('symbol', 'unknown')}: {error}")
continue
print("❌ لم يتم العثور على فرص تداول مناسبة")
return None
except Exception as error:
print(f"❌ Error while scanning for opportunities: {error}")
await r2_service_global.save_system_logs_async({
"opportunity_scan_error": True,
"error": str(error)
})
return None
async def re_analyze_open_trade_async(trade_data):
symbol = trade_data.get('symbol')
try:
async with state_manager.trade_analysis_lock:
entry_time = datetime.fromisoformat(trade_data['entry_timestamp'])
current_time = datetime.now()
hold_minutes = (current_time - entry_time).total_seconds() / 60
original_strategy = trade_data.get('strategy')
if not original_strategy or original_strategy == 'unknown':
original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
try:
market_context = await data_manager_global.get_market_context_async()
except Exception:
market_context = {'btc_sentiment': 'NEUTRAL'}
symbol_with_reasons = [{'symbol': symbol, 'reasons': ['re-analysis']}]
ohlcv_data_list = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
if not ohlcv_data_list:
return None
raw_data = ohlcv_data_list[0]
try:
updated_market_context = await data_manager_global.get_market_context_async()
if updated_market_context:
market_context = updated_market_context
except Exception:
pass
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
processed_data = await feature_processor.process_and_score_symbol(raw_data)
if not processed_data:
return None
await r2_service_global.save_candidates_data_async(
candidates_data=None,
reanalysis_data={
'market_context': market_context,
'processed_data': processed_data
}
)
try:
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
except Exception:
re_analysis_decision = local_re_analyze_trade(trade_data, processed_data)
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
if not final_decision.get('strategy'):
final_decision['strategy'] = original_strategy
await r2_service_global.save_system_logs_async({
"trade_reanalyzed": True,
"symbol": symbol,
"action": final_decision.get('action'),
"hold_minutes": hold_minutes,
"strategy": final_decision.get('strategy')
})
return {
"symbol": symbol,
"decision": final_decision,
"current_price": processed_data.get('current_price'),
"hold_minutes": hold_minutes
}
except Exception as error:
print(f"❌ Error during trade re-analysis: {error}")
await r2_service_global.save_system_logs_async({
"reanalysis_error": True,
"symbol": symbol,
"error": str(error)
})
return None
async def run_bot_cycle_async():
try:
if not await state_manager.wait_for_initialization():
print("❌ الخدمات غير مهيأة بالكامل - تخطي الدورة")
return
print("🔄 بدء دورة التداول...")
await r2_service_global.save_system_logs_async({"cycle_started": True})
if not r2_service_global.acquire_lock():
print("❌ فشل الحصول على القفل - تخطي الدورة")
return
open_trades = []
try:
open_trades = await trade_manager_global.get_open_trades()
print(f"📋 الصفقات المفتوحة: {len(open_trades)}")
trades_fixed = 0
for trade in open_trades:
if not trade.get('strategy') or trade['strategy'] == 'unknown':
original_strategy = trade.get('decision_data', {}).get('strategy', 'GENERIC')
trade['strategy'] = original_strategy
trades_fixed += 1
if trades_fixed > 0:
await r2_service_global.save_open_trades_async(open_trades)
print(f"✅ تم إصلاح {trades_fixed} صفقة")
should_look_for_new_trade = not open_trades
print(f"🔍 البحث عن صفقات جديدة: {should_look_for_new_trade}")
if open_trades:
now = datetime.now()
trades_to_reanalyze = [
trade for trade in open_trades
if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat()))
]
if trades_to_reanalyze:
print(f"🔄 إعادة تحليل {len(trades_to_reanalyze)} صفقة")
for trade in trades_to_reanalyze:
result = await re_analyze_open_trade_async(trade)
if result and result['decision'].get('action') == "CLOSE_TRADE":
await trade_manager_global.close_trade(trade, result['current_price'], 'CLOSED_BY_REANALYSIS')
should_look_for_new_trade = True
elif result and result['decision'].get('action') == "UPDATE_TRADE":
await trade_manager_global.update_trade(trade, result['decision'])
if should_look_for_new_trade:
portfolio_state = await r2_service_global.get_portfolio_state_async()
current_capital = portfolio_state.get("current_capital_usd", 0)
print(f"💰 رأس المال المتاح: ${current_capital:.2f}")
if current_capital <= 0:
if len(open_trades) == 0:
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
if initial_capital > 0:
portfolio_state["current_capital_usd"] = initial_capital
portfolio_state["invested_capital_usd"] = 0.0
await r2_service_global.save_portfolio_state_async(portfolio_state)
current_capital = initial_capital
print(f"🔄 إعادة تعيين رأس المال إلى ${initial_capital:.2f}")
if current_capital > 1:
print("🎯 البحث عن فرص تداول جديدة...")
new_opportunity = await find_new_opportunities_async()
if new_opportunity:
if not new_opportunity['decision'].get('strategy'):
new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
print(f"✅ فتح صفقة جديدة: {new_opportunity['symbol']}")
await trade_manager_global.open_trade(
new_opportunity['symbol'],
new_opportunity['decision'],
new_opportunity['current_price']
)
else:
print("❌ لم يتم العثور على فرص تداول مناسبة")
else:
print("❌ رأس المال غير كافي لفتح صفقات جديدة")
finally:
r2_service_global.release_lock()
await r2_service_global.save_system_logs_async({
"cycle_completed": True,
"open_trades": len(open_trades)
})
print("✅ اكتملت دورة التداول")
except Exception as error:
print(f"❌ Unhandled error in main cycle: {error}")
await r2_service_global.save_system_logs_async({
"cycle_error": True,
"error": str(error)
})
if r2_service_global.lock_acquired:
r2_service_global.release_lock()
@asynccontextmanager
async def lifespan(application: FastAPI):
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global, trade_manager_global, sentiment_analyzer_global, symbol_whale_monitor_global
initialization_successful = False
try:
print("🚀 بدء تهيئة التطبيق...")
r2_service_global = R2Service()
state_manager.set_service_initialized('r2_service')
print("✅ R2 Service initialized")
contracts_database = await r2_service_global.load_contracts_db_async()
print("✅ Contracts database loaded")
from whale_news_data import EnhancedWhaleMonitor
symbol_whale_monitor_global = EnhancedWhaleMonitor(contracts_database, r2_service_global)
state_manager.set_service_initialized('symbol_whale_monitor')
print("✅ Symbol Specific Whale Monitor initialized")
data_manager_global = DataManager(contracts_database, symbol_whale_monitor_global)
await data_manager_global.initialize()
state_manager.set_service_initialized('data_manager')
print("✅ Data Manager initialized")
llm_service_global = LLMService()
state_manager.set_service_initialized('llm_service')
print("✅ LLM Service initialized")
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global)
state_manager.set_service_initialized('sentiment_analyzer')
print("✅ Sentiment Analyzer initialized")
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
await learning_engine_global.initialize_enhanced()
await learning_engine_global.force_strategy_learning()
state_manager.set_service_initialized('learning_engine')
print("✅ Learning Engine initialized")
trade_manager_global = TradeManager(r2_service_global, learning_engine_global, data_manager_global)
state_manager.set_service_initialized('trade_manager')
print("✅ Trade Manager initialized")
asyncio.create_task(monitor_market_async())
asyncio.create_task(trade_manager_global.start_trade_monitoring())
await r2_service_global.save_system_logs_async({"application_started": True})
initialization_successful = True
print("🎯 التطبيق جاهز للعمل")
yield
except Exception as error:
print(f"❌ Application startup failed: {error}")
if r2_service_global:
await r2_service_global.save_system_logs_async({
"application_startup_failed": True,
"error": str(error)
})
raise
finally:
await cleanup_on_shutdown()
application = FastAPI(lifespan=lifespan)
@application.get("/run-cycle")
async def run_cycle_api():
if not state_manager.initialization_complete:
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل")
asyncio.create_task(run_bot_cycle_async())
return {"message": "Bot cycle initiated"}
@application.get("/health")
async def health_check():
learning_metrics = {}
if learning_engine_global and learning_engine_global.initialized:
learning_metrics = await learning_engine_global.calculate_performance_metrics()
api_stats = {}
if data_manager_global:
api_stats = data_manager_global.get_performance_stats()
return {
"status": "healthy" if state_manager.initialization_complete else "initializing",
"initialization_complete": state_manager.initialization_complete,
"services_initialized": state_manager.services_initialized,
"timestamp": datetime.now().isoformat(),
"services": {
"r2_service": "initialized" if r2_service_global else "uninitialized",
"llm_service": "initialized" if llm_service_global else "uninitialized",
"data_manager": "initialized" if data_manager_global else "uninitialized",
"learning_engine": "active" if learning_engine_global and learning_engine_global.initialized else "inactive",
"trade_manager": "active" if trade_manager_global else "inactive",
"symbol_whale_monitor": "active" if symbol_whale_monitor_global else "inactive"
},
"market_state_ok": state.MARKET_STATE_OK,
"learning_engine": learning_metrics
}
@application.get("/stats")
async def get_performance_stats():
try:
if not state_manager.initialization_complete:
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل")
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
learning_stats = {}
if learning_engine_global and learning_engine_global.initialized:
learning_stats = await learning_engine_global.calculate_performance_metrics()
api_stats = {}
if data_manager_global:
api_stats = data_manager_global.get_performance_stats()
stats = {
"timestamp": datetime.now().isoformat(),
"data_manager": api_stats,
"market_state": {
"is_healthy": state.MARKET_STATE_OK,
"context": market_context
},
"trade_monitoring": {
"active_trades": len(trade_manager_global.monitoring_tasks) if trade_manager_global else 0,
"is_running": trade_manager_global.is_running if trade_manager_global else False
},
"learning_engine": learning_stats,
"whale_monitoring": {
"symbol_specific_active": symbol_whale_monitor_global is not None,
"monitoring_type": "TARGETED_NETWORK_ONLY"
}
}
return stats
except Exception as error:
raise HTTPException(status_code=500, detail=f"Failed to retrieve stats: {str(error)}")
@application.get("/logs/status")
async def get_logs_status():
try:
open_trades = await r2_service_global.get_open_trades_async()
portfolio_state = await r2_service_global.get_portfolio_state_async()
return {
"logging_system": "active",
"open_trades_count": len(open_trades),
"current_capital": portfolio_state.get("current_capital_usd", 0),
"total_trades": portfolio_state.get("total_trades", 0),
"timestamp": datetime.now().isoformat()
}
except Exception as error:
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
async def cleanup_on_shutdown():
global r2_service_global, data_manager_global, trade_manager_global, learning_engine_global, symbol_whale_monitor_global
print("🛑 Shutdown signal received. Cleaning up...")
if trade_manager_global:
trade_manager_global.stop_monitoring()
print("✅ Trade monitoring stopped")
if learning_engine_global and learning_engine_global.initialized:
try:
await learning_engine_global.save_weights_to_r2()
await learning_engine_global.save_performance_history()
print("✅ Learning engine data saved")
except Exception as e:
print(f"❌ Failed to save learning engine data: {e}")
if data_manager_global:
await data_manager_global.close()
print("✅ Data manager closed")
if symbol_whale_monitor_global:
await symbol_whale_monitor_global.cleanup()
print("✅ Symbol whale monitor cleaned up")
if r2_service_global:
try:
await r2_service_global.save_system_logs_async({"application_shutdown": True})
print("✅ Shutdown log saved")
except Exception as e:
print(f"❌ Failed to save shutdown log: {e}")
if r2_service_global.lock_acquired:
r2_service_global.release_lock()
print("✅ R2 lock released")
def signal_handler(signum, frame):
asyncio.create_task(cleanup_on_shutdown())
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
if __name__ == "__main__":
uvicorn.run(application, host="0.0.0.0", port=7860)