Spaces:
Running
Running
| # ml_engine/indicators.py (V10.2 - Anti-Fragile FIX) | |
| import pandas as pd | |
| import pandas_ta as ta | |
| import numpy as np | |
| from typing import Dict | |
| try: | |
| from hurst import compute_Hc | |
| HURST_AVAILABLE = True | |
| except ImportError: | |
| print("⚠️ مكتبة 'hurst' غير موجودة. ميزة 'مفتاح النظام' ستكون معطلة.") | |
| print(" -> قم بتثبيتها: pip install hurst") | |
| HURST_AVAILABLE = False | |
| class AdvancedTechnicalAnalyzer: | |
| def __init__(self): | |
| # (هذا الكونفيغ سيبقى للاستخدامات القديمة مثل الحارس 1m) | |
| self.indicators_config = { | |
| 'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'], | |
| 'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'], | |
| 'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'], | |
| 'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'], | |
| 'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform'] | |
| } | |
| # 🔴 --- START OF UPDATED FUNCTION (V10.2 - Anti-Fragile) --- 🔴 | |
| def calculate_v9_smart_features(self, dataframe: pd.DataFrame) -> Dict[str, float]: | |
| """ | |
| (محدث V10.2) - (إصلاح خطأ "الميزات المفقودة" بشكل نهائي) | |
| - استخدام "قالب الميزات" لضمان إرجاع جميع الميزات دائماً. | |
| """ | |
| if dataframe.empty or dataframe is None or len(dataframe) < 100: | |
| return {} | |
| # --- (V10.2) الخطوة 1: تعريف "قالب الميزات" بالقيم الافتراضية --- | |
| # (هذه هي جميع الميزات التي تدرب عليها نموذج V9.8) | |
| features = { | |
| 'price_to_ema_50': 0.0, 'price_to_ema_200': 0.0, 'price_to_min_100': 0.0, | |
| 'price_to_max_100': 0.0, 'slope_14_50': 0.0, 'adx_slope': 0.0, | |
| 'volume_zscore_50': 0.0, 'vwap_gap': 0.0, 'cmf_20': 0.0, 'vroc_12': 0.0, | |
| 'obv_slope': 0.0, 'rsi_14': 50.0, 'rsi_mean_10': 50.0, 'rsi_std_10': 0.0, | |
| 'mfi_14': 50.0, 'mfi_mean_10': 50.0, 'adx_14': 20.0, 'atr_percent': 0.0, | |
| 'vol_of_vol': 0.0, 'atr_normalized_return': 0.0, 'hurst': 0.5, | |
| 'ppo_hist': 0.0, 'ppo_line': 0.0 | |
| # (ميزات مونت كارلو ستضاف لاحقاً في data_manager) | |
| } | |
| try: | |
| # --- جلب البيانات الأساسية (Series) --- | |
| close = dataframe['close'] | |
| high = dataframe['high'] | |
| low = dataframe['low'] | |
| volume = dataframe['volume'] | |
| current_price = close.iloc[-1] | |
| # --- 1. حساب مؤشرات السلسلة الكاملة (Series) --- | |
| rsi_series = ta.rsi(close, length=14) | |
| mfi_series = ta.mfi(high, low, close, volume, length=14) | |
| atr_series = ta.atr(high, low, close, length=14) | |
| adx_data = ta.adx(high, low, close, length=14) | |
| obv_series = ta.obv(close, volume) | |
| # --- 2. ميزات "نسب السعر" (Price Ratios) --- | |
| try: | |
| ema_50 = ta.ema(close, length=50).iloc[-1] | |
| ema_200 = ta.ema(close, length=200).iloc[-1] | |
| if ema_50 and ema_50 > 0: features['price_to_ema_50'] = (current_price / ema_50) - 1 | |
| if ema_200 and ema_200 > 0: features['price_to_ema_200'] = (current_price / ema_200) - 1 | |
| min_100 = low.tail(100).min(); max_100 = high.tail(100).max() | |
| if min_100 and min_100 > 0: features['price_to_min_100'] = (current_price / min_100) - 1 | |
| if max_100 and max_100 > 0: features['price_to_max_100'] = (current_price / max_100) - 1 | |
| ema_14 = ta.ema(close, length=14).iloc[-1] | |
| if ema_14 and ema_50: features['slope_14_50'] = (ema_14 - ema_50) / 14 | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| # --- 3. ميزات "الميل" (Slope) --- | |
| try: | |
| if adx_data is not None and not adx_data.empty: | |
| adx_series = adx_data['ADX_14'] | |
| if adx_series is not None and not adx_series.empty: | |
| adx_ema_5 = ta.ema(adx_series, length=5).iloc[-1]; adx_ema_15 = ta.ema(adx_series, length=15).iloc[-1] | |
| if adx_ema_5 and adx_ema_15: features['adx_slope'] = (adx_ema_5 - adx_ema_15) / 5 | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| # --- 4. ميزات "الحجم" (Volume) و "السيولة" --- | |
| try: | |
| vol_ma_50 = volume.tail(50).mean(); vol_std_50 = volume.tail(50).std() | |
| if vol_std_50 and vol_std_50 > 0: features['volume_zscore_50'] = (volume.iloc[-1] - vol_ma_50) / vol_std_50 | |
| vwap = ta.vwap(high, low, close, volume).iloc[-1] | |
| if vwap and vwap > 0: features['vwap_gap'] = (current_price - vwap) / vwap | |
| cmf = ta.cmf(high, low, close, volume, length=20) | |
| if cmf is not None and not cmf.empty: features['cmf_20'] = cmf.iloc[-1] | |
| vroc = ta.roc(volume, length=12) | |
| if vroc is not None and not vroc.empty: features['vroc_12'] = vroc.iloc[-1] | |
| if obv_series is not None and not obv_series.empty: | |
| obv_ema_10 = ta.ema(obv_series, length=10).iloc[-1]; obv_ema_30 = ta.ema(obv_series, length=30).iloc[-1] | |
| if obv_ema_10 and obv_ema_30: features['obv_slope'] = (obv_ema_10 - obv_ema_30) / 10 | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| # --- 5. ميزات "تجميعية" (Aggregative) --- | |
| try: | |
| if rsi_series is not None and not rsi_series.empty: | |
| features['rsi_14'] = rsi_series.iloc[-1]; features['rsi_mean_10'] = rsi_series.tail(10).mean(); features['rsi_std_10'] = rsi_series.tail(10).std() | |
| if mfi_series is not None and not mfi_series.empty: | |
| features['mfi_14'] = mfi_series.iloc[-1]; features['mfi_mean_10'] = mfi_series.tail(10).mean() | |
| if adx_data is not None and not adx_data.empty: | |
| adx_val = adx_data['ADX_14'].iloc[-1] | |
| if adx_val is not None: features['adx_14'] = adx_val | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| # --- 6. ميزات "التقلب" (Volatility) --- | |
| try: | |
| atr_val = None | |
| if atr_series is not None and not atr_series.empty: | |
| atr_val = atr_series.iloc[-1] | |
| if atr_val and current_price > 0: features['atr_percent'] = (atr_val / current_price) * 100 | |
| vol_of_vol_series = ta.atr(atr_series, length=10) # (Vol-of-Vol) | |
| if vol_of_vol_series is not None and not vol_of_vol_series.empty: features['vol_of_vol'] = vol_of_vol_series.iloc[-1] | |
| last_return = close.pct_change().iloc[-1] | |
| if atr_val and atr_val > 0: | |
| features['atr_normalized_return'] = last_return / atr_val | |
| # (لا نحتاج else، القيمة الافتراضية 0.0 موجودة) | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| # --- 7. ميزات النظام (Regime Features) --- | |
| try: | |
| if HURST_AVAILABLE: | |
| hurst_series = close.tail(100).to_numpy() | |
| H, c, data = compute_Hc(hurst_series, kind='price', simplified=True) | |
| features['hurst'] = H | |
| # (لا نحتاج else، القيمة الافتراضية 0.5 موجودة) | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| try: | |
| ppo_data = ta.ppo(close, fast=12, slow=26, signal=9) | |
| if ppo_data is not None and not ppo_data.empty: | |
| features['ppo_hist'] = ppo_data['PPOh_12_26_9'].iloc[-1] | |
| features['ppo_line'] = ppo_data['PPO_12_26_9'].iloc[-1] | |
| except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية) | |
| except Exception as e: | |
| # (فشل كبير، سنعيد القالب الافتراضي) | |
| # print(f"⚠️ خطأ كارثي في حساب ميزات V9.8: {e}"); | |
| pass | |
| # (تنظيف نهائي للتأكد من عدم وجود NaN/Inf) | |
| for key, value in features.items(): | |
| if not np.isfinite(value): | |
| features[key] = 0.0 # (إعادة التعيين إلى 0.0 إذا كان الحساب NaN) | |
| return features | |
| # 🔴 --- END OF UPDATED FUNCTION (V10.2) --- 🔴 | |
| # ----------------------------------------------------------------- | |
| # --- (الدوال القديمة تبقى كما هي للاستخدامات الأخرى مثل Sentry 1m) --- | |
| # ----------------------------------------------------------------- | |
| def calculate_all_indicators(self, dataframe, timeframe): | |
| if dataframe.empty or dataframe is None: return {} | |
| indicators = {} | |
| try: | |
| indicators.update(self._calculate_trend_indicators(dataframe)) | |
| indicators.update(self._calculate_momentum_indicators(dataframe)) | |
| indicators.update(self._calculate_volatility_indicators(dataframe)) | |
| indicators.update(self._calculate_volume_indicators(dataframe, timeframe)) | |
| indicators.update(self._calculate_cycle_indicators(dataframe)) | |
| except Exception as e: | |
| print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}") | |
| return indicators | |
| def _calculate_trend_indicators(self, dataframe): | |
| trend = {}; | |
| try: | |
| if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {}; | |
| if len(dataframe) >= 9: | |
| ema_9 = ta.ema(dataframe['close'], length=9); | |
| if ema_9 is not None and not ema_9.empty and not pd.isna(ema_9.iloc[-1]): trend['ema_9'] = float(ema_9.iloc[-1]); | |
| if len(dataframe) >= 21: | |
| ema_21 = ta.ema(dataframe['close'], length=21); | |
| if ema_21 is not None and not ema_21.empty and not pd.isna(ema_21.iloc[-1]): trend['ema_21'] = float(ema_21.iloc[-1]); | |
| if len(dataframe) >= 50: | |
| ema_50 = ta.ema(dataframe['close'], length=50); | |
| if ema_50 is not None and not ema_50.empty and not pd.isna(ema_50.iloc[-1]): trend['ema_50'] = float(ema_50.iloc[-1]); | |
| if len(dataframe) >= 200: | |
| ema_200 = ta.ema(dataframe['close'], length=200); | |
| if ema_200 is not None and not ema_200.empty and not pd.isna(ema_200.iloc[-1]): trend['ema_200'] = float(ema_200.iloc[-1]); | |
| if len(dataframe) >= 26: | |
| try: | |
| ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close']); | |
| if ichimoku is not None and len(ichimoku) > 0: | |
| conversion_line = ichimoku[0].get('ITS_9') if ichimoku[0] is not None else None; | |
| base_line = ichimoku[0].get('IKS_26') if ichimoku[0] is not None else None; | |
| if conversion_line is not None and not conversion_line.empty and not pd.isna(conversion_line.iloc[-1]): trend['ichimoku_conversion'] = float(conversion_line.iloc[-1]); | |
| if base_line is not None and not base_line.empty and not pd.isna(base_line.iloc[-1]): trend['ichimoku_base'] = float(base_line.iloc[-1]); | |
| except Exception as ichimoku_error: pass; | |
| if len(dataframe) >= 14: | |
| try: | |
| adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14); | |
| if adx_result is not None and not adx_result.empty: | |
| adx_value = adx_result.get('ADX_14'); | |
| if adx_value is not None and not adx_value.empty and not pd.isna(adx_value.iloc[-1]): trend['adx'] = float(adx_value.iloc[-1]); | |
| except Exception as adx_error: pass; | |
| except Exception as e: pass; | |
| return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)}; | |
| def _calculate_momentum_indicators(self, dataframe): | |
| momentum = {}; | |
| try: | |
| if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {}; | |
| if len(dataframe) >= 14: | |
| rsi = ta.rsi(dataframe['close'], length=14); | |
| if rsi is not None and not rsi.empty and not pd.isna(rsi.iloc[-1]): momentum['rsi'] = float(rsi.iloc[-1]); | |
| if len(dataframe) >= 26: | |
| macd = ta.macd(dataframe['close']); | |
| if macd is not None and not macd.empty: | |
| macd_hist = macd.get('MACDh_12_26_9'); | |
| macd_line = macd.get('MACD_12_26_9'); | |
| if macd_hist is not None and not macd_hist.empty and not pd.isna(macd_hist.iloc[-1]): momentum['macd_hist'] = float(macd_hist.iloc[-1]); | |
| if macd_line is not None and not macd_line.empty and not pd.isna(macd_line.iloc[-1]): momentum['macd_line'] = float(macd_line.iloc[-1]); | |
| if len(dataframe) >= 14: | |
| stoch_rsi = ta.stochrsi(dataframe['close'], length=14); | |
| if stoch_rsi is not None and not stoch_rsi.empty: | |
| stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3'); | |
| if stoch_k is not None and not stoch_k.empty and not pd.isna(stoch_k.iloc[-1]): momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1]); | |
| if len(dataframe) >= 14: | |
| williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14); | |
| if williams is not None and not williams.empty and not pd.isna(williams.iloc[-1]): momentum['williams_r'] = float(williams.iloc[-1]); | |
| except Exception as e: pass; | |
| return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)}; | |
| def _calculate_volatility_indicators(self, dataframe): | |
| volatility = {}; | |
| try: | |
| if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {}; | |
| if len(dataframe) >= 20: | |
| bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2); | |
| if bollinger_bands is not None and not bollinger_bands.empty: | |
| bb_lower = bollinger_bands.get('BBL_20_2.0'); bb_upper = bollinger_bands.get('BBU_20_2.0'); bb_middle = bollinger_bands.get('BBM_20_2.0'); | |
| if bb_lower is not None and not bb_lower.empty and not pd.isna(bb_lower.iloc[-1]): volatility['bb_lower'] = float(bb_lower.iloc[-1]); | |
| if bb_upper is not None and not bb_upper.empty and not pd.isna(bb_upper.iloc[-1]): volatility['bb_upper'] = float(bb_upper.iloc[-1]); | |
| if bb_middle is not None and not bb_middle.empty and not pd.isna(bb_middle.iloc[-1]): volatility['bb_middle'] = float(bb_middle.iloc[-1]); | |
| if len(dataframe) >= 14: | |
| average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14); | |
| if average_true_range is not None and not average_true_range.empty and not pd.isna(average_true_range.iloc[-1]): | |
| atr_value = float(average_true_range.iloc[-1]); volatility['atr'] = atr_value; | |
| current_close = dataframe['close'].iloc[-1] if not dataframe['close'].empty else 0; | |
| if atr_value and current_close > 0: volatility['atr_percent'] = (atr_value / current_close) * 100; | |
| except Exception as e: pass; | |
| return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)}; | |
| def _calculate_volume_indicators(self, dataframe, timeframe): | |
| volume = {}; | |
| try: | |
| if dataframe is None or dataframe.empty or 'close' not in dataframe.columns or 'volume' not in dataframe.columns: return {}; | |
| if len(dataframe) >= 1: | |
| try: | |
| df_vwap = dataframe.copy(); | |
| if not isinstance(df_vwap.index, pd.DatetimeIndex): | |
| if 'timestamp' in df_vwap.columns: | |
| df_vwap['timestamp'] = pd.to_datetime(df_vwap['timestamp'], unit='ms'); df_vwap.set_index('timestamp', inplace=True); | |
| elif not df_vwap.index.is_numeric(): | |
| df_vwap.index = pd.to_datetime(df_vwap.index, unit='ms'); | |
| else: | |
| raise ValueError("DataFrame needs 'timestamp' column or DatetimeIndex"); | |
| df_vwap.sort_index(inplace=True); | |
| volume_weighted_average_price = ta.vwap(high=df_vwap['high'], low=df_vwap['low'], close=df_vwap['close'], volume=df_vwap['volume']); | |
| if volume_weighted_average_price is not None and not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]): volume['vwap'] = float(volume_weighted_average_price.iloc[-1]); | |
| except Exception as vwap_error: | |
| if "VWAP requires an ordered DatetimeIndex" not in str(vwap_error) and "Index" not in str(vwap_error): pass; | |
| if len(dataframe) >= 20: | |
| try: | |
| typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3; | |
| vwap_simple = (typical_price * dataframe['volume']).sum() / dataframe['volume'].sum(); | |
| if not np.isnan(vwap_simple): volume['vwap'] = float(vwap_simple); | |
| except Exception as simple_vwap_error: pass; | |
| try: | |
| on_balance_volume = ta.obv(dataframe['close'], dataframe['volume']); | |
| if on_balance_volume is not None and not on_balance_volume.empty and not pd.isna(on_balance_volume.iloc[-1]): volume['obv'] = float(on_balance_volume.iloc[-1]); | |
| except Exception as obv_error: pass; | |
| if len(dataframe) >= 14: | |
| try: | |
| money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14); | |
| if money_flow_index is not None and not money_flow_index.empty and not pd.isna(money_flow_index.iloc[-1]): volume['mfi'] = float(money_flow_index.iloc[-1]); | |
| except Exception as mfi_error: pass; | |
| if len(dataframe) >= 20: | |
| try: | |
| volume_avg_20 = float(dataframe['volume'].tail(20).mean()); | |
| current_volume = float(dataframe['volume'].iloc[-1]) if not dataframe['volume'].empty else 0; | |
| if volume_avg_20 and volume_avg_20 > 0 and current_volume > 0: | |
| volume_ratio = current_volume / volume_avg_20; | |
| if not np.isnan(volume_ratio): volume['volume_ratio'] = volume_ratio; | |
| except Exception as volume_error: pass; | |
| except Exception as e: pass; | |
| return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)}; | |
| def _calculate_cycle_indicators(self, dataframe): | |
| cycle = {}; | |
| try: | |
| if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {}; | |
| if len(dataframe) >= 9: | |
| hull_moving_average = ta.hma(dataframe['close'], length=9); | |
| if hull_moving_average is not None and not hull_moving_average.empty and not pd.isna(hull_moving_average.iloc[-1]): cycle['hull_ma'] = float(hull_moving_average.iloc[-1]); | |
| if len(dataframe) >= 10: | |
| supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3); | |
| if supertrend is not None and not supertrend.empty: | |
| supertrend_value = supertrend.get('SUPERT_10_3.0'); | |
| if supertrend_value is not None and not supertrend_value.empty and not pd.isna(supertrend_value.iloc[-1]): cycle['supertrend'] = float(supertrend_value.iloc[-1]); | |
| except Exception as e: pass; | |
| return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}; | |
| print("✅ ML Module: Technical Indicators loaded (V10.2 - Anti-Fragile FIX)") |