Trad / app.py
Riy777's picture
Update app.py
bd9ac84
raw
history blame
26.6 kB
# app.py
import os
import traceback
import signal
import sys
import uvicorn
import asyncio
import json
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from datetime import datetime
from r2 import R2Service
from LLM import LLMService
from data_manager import DataManager
from ML import MLProcessor
from learning_engine import LearningEngine
from sentiment_news import SentimentAnalyzer
from trade_manager import TradeManager
import state
from helpers import safe_float_conversion, validate_candidate_data_enhanced
# المتغيرات العامة
r2_service_global = None
data_manager_global = None
llm_service_global = None
learning_engine_global = None
trade_manager_global = None
sentiment_analyzer_global = None
symbol_whale_monitor_global = None
class StateManager:
def __init__(self):
self.market_analysis_lock = asyncio.Lock()
self.trade_analysis_lock = asyncio.Lock()
self.initialization_complete = False
self.services_initialized = {
'r2_service': False,
'data_manager': False,
'llm_service': False,
'learning_engine': False,
'trade_manager': False,
'sentiment_analyzer': False,
'symbol_whale_monitor': False
}
async def wait_for_initialization(self, timeout=30):
start_time = time.time()
while not self.initialization_complete and (time.time() - start_time) < timeout:
await asyncio.sleep(1)
return self.initialization_complete
def set_service_initialized(self, service_name):
self.services_initialized[service_name] = True
if all(self.services_initialized.values()):
self.initialization_complete = True
state_manager = StateManager()
async def monitor_market_async():
"""مراقبة السوق"""
global data_manager_global, sentiment_analyzer_global
if not await state_manager.wait_for_initialization():
print("❌ فشل تهيئة الخدمات - إيقاف مراقبة السوق")
return
while True:
try:
async with state_manager.market_analysis_lock:
market_context = await sentiment_analyzer_global.get_market_sentiment()
if not market_context:
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
continue
bitcoin_sentiment = market_context.get('btc_sentiment')
fear_greed_index = market_context.get('fear_and_greed_index')
should_halt_trading, halt_reason = False, ""
if bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30):
should_halt_trading, halt_reason = True, "ظروف سوق هابطة"
if should_halt_trading:
state.MARKET_STATE_OK = False
await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason})
else:
if not state.MARKET_STATE_OK:
print("✅ تحسنت ظروف السوق. استئناف العمليات العادية.")
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
except Exception as error:
print(f"❌ خطأ أثناء مراقبة السوق: {error}")
state.MARKET_STATE_OK = True
await asyncio.sleep(60)
async def process_batch_parallel(batch, ml_processor, batch_num, total_batches):
"""معالجة دفعة من الرموز بشكل متوازي"""
try:
print(f" 🔄 معالجة الدفعة {batch_num}/{total_batches} ({len(batch)} عملة)...")
# إنشاء مهام للدفعة الحالية
batch_tasks = []
for symbol_data in batch:
task = asyncio.create_task(ml_processor.process_and_score_symbol_enhanced(symbol_data))
batch_tasks.append(task)
# انتظار انتهاء جميع مهام الدفعة الحالية
batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True)
# تصفية النتائج الناجحة
successful_results = []
for result in batch_results:
if isinstance(result, Exception):
continue
if result and result.get('enhanced_final_score', 0) > 0.4:
successful_results.append(result)
print(f" ✅ اكتملت الدفعة {batch_num}: {len(successful_results)}/{len(batch)} ناجحة")
return successful_results
except Exception as error:
print(f"❌ خطأ في معالجة الدفعة {batch_num}: {error}")
return []
async def run_3_layer_analysis():
"""
تشغيل النظام الطبقي المكون من 3 طبقات:
الطبقة 1: data_manager - الفحص السريع
الطبقة 2: MLProcessor - التحليل المتقدم
الطبقة 3: LLMService - النموذج الضخم
"""
try:
print("🎯 بدء النظام الطبقي المكون من 3 طبقات...")
if not await state_manager.wait_for_initialization():
print("❌ الخدمات غير مهيأة بالكامل")
return None
# الطبقة 1: الفحص السريع لجميع العملات
print("\n🔍 الطبقة 1: الفحص السريع (data_manager)...")
layer1_candidates = await data_manager_global.layer1_rapid_screening()
if not layer1_candidates:
print("❌ لم يتم العثور على مرشحين في الطبقة 1")
return None
print(f"✅ تم اختيار {len(layer1_candidates)} عملة للطبقة 2")
# جلب بيانات OHLCV كاملة للمرشحين
layer1_symbols = [candidate['symbol'] for candidate in layer1_candidates]
ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols(layer1_symbols)
if not ohlcv_data_list:
print("❌ فشل جلب بيانات OHLCV للمرشحين")
return None
# الطبقة 2: التحليل المتقدم بشكل متوازي حقيقي
print(f"\n📈 الطبقة 2: التحليل المتقدم (MLProcessor) بشكل متوازي لـ {len(ohlcv_data_list)} عملة...")
market_context = await data_manager_global.get_market_context_async()
# إنشاء معالج ML
ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global)
# تجهيز البيانات للطبقة 2
layer2_data = []
for ohlcv_data in ohlcv_data_list:
try:
# إضافة أسباب الترشيح من الطبقة 1
symbol = ohlcv_data['symbol']
layer1_candidate = next((c for c in layer1_candidates if c['symbol'] == symbol), None)
if layer1_candidate:
ohlcv_data['reasons_for_candidacy'] = layer1_candidate.get('reasons', [])
ohlcv_data['layer1_score'] = layer1_candidate.get('layer1_score', 0)
layer2_data.append(ohlcv_data)
except Exception as e:
print(f"❌ خطأ في إعداد تحليل {ohlcv_data.get('symbol')}: {e}")
continue
# تقسيم العمل إلى دفعات للمعالجة المتوازية
batch_size = 20 # 20 عملة في كل دفعة
batches = [layer2_data[i:i + batch_size] for i in range(0, len(layer2_data), batch_size)]
total_batches = len(batches)
print(f" 🚀 تقسيم العمل إلى {total_batches} دفعة ({batch_size} عملة لكل دفعة)...")
# معالجة جميع الدفعات بشكل متوازي
batch_tasks = []
for i, batch in enumerate(batches):
task = asyncio.create_task(process_batch_parallel(batch, ml_processor, i+1, total_batches))
batch_tasks.append(task)
# جمع نتائج جميع الدفعات
batch_results = await asyncio.gather(*batch_tasks)
# دمج جميع النتائج
layer2_candidates = []
for batch_result in batch_results:
layer2_candidates.extend(batch_result)
print(f"✅ اكتمل التحليل المتقدم: {len(layer2_candidates)}/{len(ohlcv_data_list)} عملة تم تحليلها بنجاح")
if not layer2_candidates:
print("❌ لم يتم العثور على مرشحين في الطبقة 2")
return None
# ترتيب المرشحين حسب الدرجة المحسنة وأخذ أقوى 10 مرشحين فقط للطبقة 3
layer2_candidates.sort(key=lambda x: x.get('enhanced_final_score', 0), reverse=True)
target_count = min(10, len(layer2_candidates))
final_layer2_candidates = layer2_candidates[:target_count]
print(f"🎯 تم اختيار {len(final_layer2_candidates)} عملة للطبقة 3 (الأقوى فقط)")
# عرض أفضل 10 عملات من الطبقة 2
print("\n🏆 أفضل 10 عملات من الطبقة 2:")
for i, candidate in enumerate(final_layer2_candidates):
score = candidate.get('enhanced_final_score', 0)
strategy = candidate.get('target_strategy', 'GENERIC')
mc_score = candidate.get('monte_carlo_probability', 0)
pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern')
print(f" {i+1}. {candidate['symbol']}:")
print(f" 📊 النهائي: {score:.3f}")
if mc_score > 0:
print(f" 🎯 مونت كارلو: {mc_score:.3f}")
print(f" 🎯 استراتيجية: {strategy} | نمط: {pattern}")
# الطبقة 3: التحليل بالنموذج الضخم
print("\n🧠 الطبقة 3: التحليل بالنموذج الضخم (LLMService)...")
final_opportunities = []
for candidate in final_layer2_candidates:
try:
print(f" 🤔 تحليل {candidate['symbol']} بالنموذج الضخم...")
# إرسال كل عملة للنموذج الضخم على حدة
llm_analysis = await llm_service_global.get_trading_decision(candidate)
# ✅ التحقق من وجود قرار صالح من النموذج
if llm_analysis and llm_analysis.get('action') in ['BUY', 'SELL']:
opportunity = {
'symbol': candidate['symbol'],
'current_price': candidate.get('current_price', 0),
'decision': llm_analysis,
'enhanced_score': candidate.get('enhanced_final_score', 0),
'llm_confidence': llm_analysis.get('confidence_level', 0),
'strategy': llm_analysis.get('strategy', 'GENERIC'),
'analysis_timestamp': datetime.now().isoformat()
}
final_opportunities.append(opportunity)
print(f" ✅ {candidate['symbol']}: {llm_analysis.get('action')} - ثقة: {llm_analysis.get('confidence_level', 0):.2f}")
else:
print(f" ⚠️ {candidate['symbol']}: لا يوجد قرار تداول من النموذج الضخم")
except Exception as e:
print(f"❌ خطأ في تحليل النموذج الضخم لـ {candidate.get('symbol')}: {e}")
continue
if not final_opportunities:
print("❌ لم يتم العثور على فرص تداول مناسبة")
return None
# ترتيب الفرص النهائية حسب الثقة والدرجة
final_opportunities.sort(key=lambda x: (x['llm_confidence'] + x['enhanced_score']) / 2, reverse=True)
print(f"\n🏆 النظام الطبقي اكتمل: {len(final_opportunities)} فرصة تداول")
for i, opportunity in enumerate(final_opportunities[:5]):
print(f" {i+1}. {opportunity['symbol']}: {opportunity['decision'].get('action')} - ثقة: {opportunity['llm_confidence']:.2f}")
return final_opportunities[0] if final_opportunities else None
except Exception as error:
print(f"❌ خطأ في النظام الطبقي: {error}")
import traceback
traceback.print_exc()
return None
async def re_analyze_open_trade_async(trade_data):
"""إعادة تحليل الصفقة المفتوحة"""
symbol = trade_data.get('symbol')
try:
async with state_manager.trade_analysis_lock:
# جلب البيانات الحالية
market_context = await data_manager_global.get_market_context_async()
ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols([symbol])
if not ohlcv_data_list:
return None
ohlcv_data = ohlcv_data_list[0]
ohlcv_data['reasons_for_candidacy'] = ['re-analysis']
# استخدام ML للتحليل
ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global)
processed_data = await ml_processor.process_and_score_symbol_enhanced(ohlcv_data)
if not processed_data:
return None
# استخدام LLM لإعادة التحليل
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
# ✅ التحقق من وجود قرار صالح من النموذج
if re_analysis_decision:
await r2_service_global.save_system_logs_async({
"trade_reanalyzed": True,
"symbol": symbol,
"action": re_analysis_decision.get('action'),
"strategy": re_analysis_decision.get('strategy', 'GENERIC')
})
return {
"symbol": symbol,
"decision": re_analysis_decision,
"current_price": processed_data.get('current_price')
}
else:
print(f"⚠️ لا يوجد قرار إعادة تحليل لـ {symbol}")
return None
except Exception as error:
print(f"❌ Error during trade re-analysis: {error}")
await r2_service_global.save_system_logs_async({
"reanalysis_error": True,
"symbol": symbol,
"error": str(error)
})
return None
async def run_bot_cycle_async():
"""دورة التداول الرئيسية"""
try:
if not await state_manager.wait_for_initialization():
print("❌ الخدمات غير مهيأة بالكامل - تخطي الدورة")
return
print("🔄 بدء دورة التداول...")
await r2_service_global.save_system_logs_async({"cycle_started": True})
if not r2_service_global.acquire_lock():
print("❌ فشل الحصول على القفل - تخطي الدورة")
return
try:
open_trades = await trade_manager_global.get_open_trades()
print(f"📋 الصفقات المفتوحة: {len(open_trades)}")
should_look_for_new_trade = len(open_trades) == 0
# إعادة تحليل الصفقات المفتوحة
if open_trades:
now = datetime.now()
trades_to_reanalyze = [
trade for trade in open_trades
if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat()))
]
if trades_to_reanalyze:
print(f"🔄 إعادة تحليل {len(trades_to_reanalyze)} صفقة")
for trade in trades_to_reanalyze:
result = await re_analyze_open_trade_async(trade)
if result and result['decision'].get('action') == "CLOSE_TRADE":
await trade_manager_global.close_trade(trade, result['current_price'], 'CLOSED_BY_REANALYSIS')
should_look_for_new_trade = True
elif result and result['decision'].get('action') == "UPDATE_TRADE":
await trade_manager_global.update_trade(trade, result['decision'])
# البحث عن صفقات جديدة إذا لزم الأمر
if should_look_for_new_trade:
portfolio_state = await r2_service_global.get_portfolio_state_async()
current_capital = portfolio_state.get("current_capital_usd", 0)
if current_capital > 1:
print("🎯 البحث عن فرص تداول جديدة...")
best_opportunity = await run_3_layer_analysis()
if best_opportunity:
print(f"✅ فتح صفقة جديدة: {best_opportunity['symbol']}")
await trade_manager_global.open_trade(
best_opportunity['symbol'],
best_opportunity['decision'],
best_opportunity['current_price']
)
else:
print("❌ لم يتم العثور على فرص تداول مناسبة")
else:
print("❌ رأس المال غير كافي لفتح صفقات جديدة")
finally:
r2_service_global.release_lock()
await r2_service_global.save_system_logs_async({
"cycle_completed": True,
"open_trades": len(open_trades) if 'open_trades' in locals() else 0
})
print("✅ اكتملت دورة التداول")
except Exception as error:
print(f"❌ Unhandled error in main cycle: {error}")
await r2_service_global.save_system_logs_async({
"cycle_error": True,
"error": str(error)
})
if r2_service_global.lock_acquired:
r2_service_global.release_lock()
@asynccontextmanager
async def lifespan(application: FastAPI):
"""إدارة دورة حياة التطبيق"""
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global
global trade_manager_global, sentiment_analyzer_global, symbol_whale_monitor_global
initialization_successful = False
try:
print("🚀 بدء تهيئة التطبيق...")
# تهيئة الخدمات
r2_service_global = R2Service()
state_manager.set_service_initialized('r2_service')
contracts_database = await r2_service_global.load_contracts_db_async()
from whale_news_data import EnhancedWhaleMonitor
symbol_whale_monitor_global = EnhancedWhaleMonitor(contracts_database, r2_service_global)
state_manager.set_service_initialized('symbol_whale_monitor')
data_manager_global = DataManager(contracts_database, symbol_whale_monitor_global)
await data_manager_global.initialize()
state_manager.set_service_initialized('data_manager')
llm_service_global = LLMService()
llm_service_global.r2_service = r2_service_global # ✅ ربط R2Service مع LLMService
state_manager.set_service_initialized('llm_service')
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global)
state_manager.set_service_initialized('sentiment_analyzer')
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
await learning_engine_global.initialize_enhanced()
state_manager.set_service_initialized('learning_engine')
trade_manager_global = TradeManager(r2_service_global, learning_engine_global, data_manager_global)
state_manager.set_service_initialized('trade_manager')
# بدء المهام الخلفية
asyncio.create_task(monitor_market_async())
asyncio.create_task(trade_manager_global.start_trade_monitoring())
await r2_service_global.save_system_logs_async({"application_started": True})
initialization_successful = True
print("🎯 التطبيق جاهز للعمل - نظام الطبقات 3 فعال")
yield
except Exception as error:
print(f"❌ Application startup failed: {error}")
if r2_service_global:
await r2_service_global.save_system_logs_async({
"application_startup_failed": True,
"error": str(error)
})
raise
finally:
await cleanup_on_shutdown()
application = FastAPI(lifespan=lifespan)
@application.get("/run-cycle")
async def run_cycle_api():
"""تشغيل دورة التداول"""
if not state_manager.initialization_complete:
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل")
asyncio.create_task(run_bot_cycle_async())
return {"message": "Bot cycle initiated", "system": "3-Layer Analysis"}
@application.get("/health")
async def health_check():
"""فحص صحة النظام"""
services_status = {
"status": "healthy" if state_manager.initialization_complete else "initializing",
"initialization_complete": state_manager.initialization_complete,
"services_initialized": state_manager.services_initialized,
"timestamp": datetime.now().isoformat(),
"system_architecture": "3-Layer Analysis System",
"layers": {
"layer1": "Data Manager - Rapid Screening",
"layer2": "ML Processor - Advanced Analysis",
"layer3": "LLM Service - Deep Analysis"
}
}
return services_status
@application.get("/analyze-market")
async def analyze_market_api():
"""تشغيل التحليل الطبقي فقط"""
if not state_manager.initialization_complete:
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل")
result = await run_3_layer_analysis()
if result:
return {
"opportunity_found": True,
"symbol": result['symbol'],
"action": result['decision'].get('action'),
"confidence": result['llm_confidence'],
"strategy": result['strategy']
}
else:
return {"opportunity_found": False, "message": "No suitable opportunities found"}
@application.get("/portfolio")
async def get_portfolio_api():
"""الحصول على حالة المحفظة"""
if not state_manager.initialization_complete:
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل")
try:
portfolio_state = await r2_service_global.get_portfolio_state_async()
open_trades = await trade_manager_global.get_open_trades()
return {
"portfolio": portfolio_state,
"open_trades": open_trades,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"خطأ في جلب بيانات المحفظة: {str(e)}")
@application.get("/system-status")
async def get_system_status():
"""الحصول على حالة النظام التفصيلية"""
monitoring_status = trade_manager_global.get_monitoring_status() if trade_manager_global else {}
return {
"initialization_complete": state_manager.initialization_complete,
"services_initialized": state_manager.services_initialized,
"market_state_ok": state.MARKET_STATE_OK,
"monitoring_status": monitoring_status,
"timestamp": datetime.now().isoformat()
}
async def cleanup_on_shutdown():
"""تنظيف الموارد عند الإغلاق"""
global r2_service_global, data_manager_global, trade_manager_global, learning_engine_global
print("🛑 Shutdown signal received. Cleaning up...")
if trade_manager_global:
trade_manager_global.stop_monitoring()
print("✅ Trade monitoring stopped")
if learning_engine_global and learning_engine_global.initialized:
try:
await learning_engine_global.save_weights_to_r2()
await learning_engine_global.save_performance_history()
print("✅ Learning engine data saved")
except Exception as e:
print(f"❌ Failed to save learning engine data: {e}")
if data_manager_global:
await data_manager_global.close()
print("✅ Data manager closed")
if r2_service_global:
try:
await r2_service_global.save_system_logs_async({"application_shutdown": True})
print("✅ Shutdown log saved")
except Exception as e:
print(f"❌ Failed to save shutdown log: {e}")
if r2_service_global.lock_acquired:
r2_service_global.release_lock()
print("✅ R2 lock released")
def signal_handler(signum, frame):
"""معالج إشارات الإغلاق"""
print(f"🛑 Received signal {signum}. Initiating shutdown...")
asyncio.create_task(cleanup_on_shutdown())
sys.exit(0)
# تسجيل معالجات الإشارات
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
if __name__ == "__main__":
print("🚀 Starting AI Trading Bot with 3-Layer Analysis System...")
uvicorn.run(application, host="0.0.0.0", port=7860, log_level="info")