Spaces:
Running
Running
| # app.py | |
| import os | |
| import traceback | |
| import signal | |
| import sys | |
| import uvicorn | |
| import asyncio | |
| import json | |
| import time | |
| from contextlib import asynccontextmanager | |
| from fastapi import FastAPI, HTTPException | |
| from datetime import datetime | |
| from r2 import R2Service | |
| from LLM import LLMService | |
| from data_manager import DataManager | |
| from ML import MLProcessor | |
| from learning_engine import LearningEngine | |
| from sentiment_news import SentimentAnalyzer | |
| from trade_manager import TradeManager | |
| import state | |
| from helpers import safe_float_conversion, validate_candidate_data_enhanced | |
| # المتغيرات العامة | |
| r2_service_global = None | |
| data_manager_global = None | |
| llm_service_global = None | |
| learning_engine_global = None | |
| trade_manager_global = None | |
| sentiment_analyzer_global = None | |
| symbol_whale_monitor_global = None | |
| class StateManager: | |
| def __init__(self): | |
| self.market_analysis_lock = asyncio.Lock() | |
| self.trade_analysis_lock = asyncio.Lock() | |
| self.initialization_complete = False | |
| self.services_initialized = { | |
| 'r2_service': False, | |
| 'data_manager': False, | |
| 'llm_service': False, | |
| 'learning_engine': False, | |
| 'trade_manager': False, | |
| 'sentiment_analyzer': False, | |
| 'symbol_whale_monitor': False | |
| } | |
| async def wait_for_initialization(self, timeout=30): | |
| start_time = time.time() | |
| while not self.initialization_complete and (time.time() - start_time) < timeout: | |
| await asyncio.sleep(1) | |
| return self.initialization_complete | |
| def set_service_initialized(self, service_name): | |
| self.services_initialized[service_name] = True | |
| if all(self.services_initialized.values()): | |
| self.initialization_complete = True | |
| state_manager = StateManager() | |
| async def monitor_market_async(): | |
| """مراقبة السوق""" | |
| global data_manager_global, sentiment_analyzer_global | |
| if not await state_manager.wait_for_initialization(): | |
| print("❌ فشل تهيئة الخدمات - إيقاف مراقبة السوق") | |
| return | |
| while True: | |
| try: | |
| async with state_manager.market_analysis_lock: | |
| market_context = await sentiment_analyzer_global.get_market_sentiment() | |
| if not market_context: | |
| state.MARKET_STATE_OK = True | |
| await asyncio.sleep(60) | |
| continue | |
| bitcoin_sentiment = market_context.get('btc_sentiment') | |
| fear_greed_index = market_context.get('fear_and_greed_index') | |
| should_halt_trading, halt_reason = False, "" | |
| if bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30): | |
| should_halt_trading, halt_reason = True, "ظروف سوق هابطة" | |
| if should_halt_trading: | |
| state.MARKET_STATE_OK = False | |
| await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason}) | |
| else: | |
| if not state.MARKET_STATE_OK: | |
| print("✅ تحسنت ظروف السوق. استئناف العمليات العادية.") | |
| state.MARKET_STATE_OK = True | |
| await asyncio.sleep(60) | |
| except Exception as error: | |
| print(f"❌ خطأ أثناء مراقبة السوق: {error}") | |
| state.MARKET_STATE_OK = True | |
| await asyncio.sleep(60) | |
| async def process_batch_parallel(batch, ml_processor, batch_num, total_batches): | |
| """معالجة دفعة من الرموز بشكل متوازي""" | |
| try: | |
| print(f" 🔄 معالجة الدفعة {batch_num}/{total_batches} ({len(batch)} عملة)...") | |
| # إنشاء مهام للدفعة الحالية | |
| batch_tasks = [] | |
| for symbol_data in batch: | |
| task = asyncio.create_task(ml_processor.process_and_score_symbol_enhanced(symbol_data)) | |
| batch_tasks.append(task) | |
| # انتظار انتهاء جميع مهام الدفعة الحالية | |
| batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True) | |
| # تصفية النتائج الناجحة | |
| successful_results = [] | |
| for result in batch_results: | |
| if isinstance(result, Exception): | |
| continue | |
| if result and result.get('enhanced_final_score', 0) > 0.4: | |
| successful_results.append(result) | |
| print(f" ✅ اكتملت الدفعة {batch_num}: {len(successful_results)}/{len(batch)} ناجحة") | |
| return successful_results | |
| except Exception as error: | |
| print(f"❌ خطأ في معالجة الدفعة {batch_num}: {error}") | |
| return [] | |
| async def run_3_layer_analysis(): | |
| """ | |
| تشغيل النظام الطبقي المكون من 3 طبقات: | |
| الطبقة 1: data_manager - الفحص السريع | |
| الطبقة 2: MLProcessor - التحليل المتقدم | |
| الطبقة 3: LLMService - النموذج الضخم | |
| """ | |
| try: | |
| print("🎯 بدء النظام الطبقي المكون من 3 طبقات...") | |
| if not await state_manager.wait_for_initialization(): | |
| print("❌ الخدمات غير مهيأة بالكامل") | |
| return None | |
| # الطبقة 1: الفحص السريع لجميع العملات | |
| print("\n🔍 الطبقة 1: الفحص السريع (data_manager)...") | |
| layer1_candidates = await data_manager_global.layer1_rapid_screening() | |
| if not layer1_candidates: | |
| print("❌ لم يتم العثور على مرشحين في الطبقة 1") | |
| return None | |
| print(f"✅ تم اختيار {len(layer1_candidates)} عملة للطبقة 2") | |
| # جلب بيانات OHLCV كاملة للمرشحين | |
| layer1_symbols = [candidate['symbol'] for candidate in layer1_candidates] | |
| ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols(layer1_symbols) | |
| if not ohlcv_data_list: | |
| print("❌ فشل جلب بيانات OHLCV للمرشحين") | |
| return None | |
| # الطبقة 2: التحليل المتقدم بشكل متوازي حقيقي | |
| print(f"\n📈 الطبقة 2: التحليل المتقدم (MLProcessor) بشكل متوازي لـ {len(ohlcv_data_list)} عملة...") | |
| market_context = await data_manager_global.get_market_context_async() | |
| # إنشاء معالج ML | |
| ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global) | |
| # تجهيز البيانات للطبقة 2 | |
| layer2_data = [] | |
| for ohlcv_data in ohlcv_data_list: | |
| try: | |
| # إضافة أسباب الترشيح من الطبقة 1 | |
| symbol = ohlcv_data['symbol'] | |
| layer1_candidate = next((c for c in layer1_candidates if c['symbol'] == symbol), None) | |
| if layer1_candidate: | |
| ohlcv_data['reasons_for_candidacy'] = layer1_candidate.get('reasons', []) | |
| ohlcv_data['layer1_score'] = layer1_candidate.get('layer1_score', 0) | |
| layer2_data.append(ohlcv_data) | |
| except Exception as e: | |
| print(f"❌ خطأ في إعداد تحليل {ohlcv_data.get('symbol')}: {e}") | |
| continue | |
| # تقسيم العمل إلى دفعات للمعالجة المتوازية | |
| batch_size = 20 # 20 عملة في كل دفعة | |
| batches = [layer2_data[i:i + batch_size] for i in range(0, len(layer2_data), batch_size)] | |
| total_batches = len(batches) | |
| print(f" 🚀 تقسيم العمل إلى {total_batches} دفعة ({batch_size} عملة لكل دفعة)...") | |
| # معالجة جميع الدفعات بشكل متوازي | |
| batch_tasks = [] | |
| for i, batch in enumerate(batches): | |
| task = asyncio.create_task(process_batch_parallel(batch, ml_processor, i+1, total_batches)) | |
| batch_tasks.append(task) | |
| # جمع نتائج جميع الدفعات | |
| batch_results = await asyncio.gather(*batch_tasks) | |
| # دمج جميع النتائج | |
| layer2_candidates = [] | |
| for batch_result in batch_results: | |
| layer2_candidates.extend(batch_result) | |
| print(f"✅ اكتمل التحليل المتقدم: {len(layer2_candidates)}/{len(ohlcv_data_list)} عملة تم تحليلها بنجاح") | |
| if not layer2_candidates: | |
| print("❌ لم يتم العثور على مرشحين في الطبقة 2") | |
| return None | |
| # ترتيب المرشحين حسب الدرجة المحسنة وأخذ أقوى 10 مرشحين فقط للطبقة 3 | |
| layer2_candidates.sort(key=lambda x: x.get('enhanced_final_score', 0), reverse=True) | |
| target_count = min(10, len(layer2_candidates)) | |
| final_layer2_candidates = layer2_candidates[:target_count] | |
| print(f"🎯 تم اختيار {len(final_layer2_candidates)} عملة للطبقة 3 (الأقوى فقط)") | |
| # عرض أفضل 10 عملات من الطبقة 2 | |
| print("\n🏆 أفضل 10 عملات من الطبقة 2:") | |
| for i, candidate in enumerate(final_layer2_candidates): | |
| score = candidate.get('enhanced_final_score', 0) | |
| strategy = candidate.get('target_strategy', 'GENERIC') | |
| mc_score = candidate.get('monte_carlo_probability', 0) | |
| pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern') | |
| print(f" {i+1}. {candidate['symbol']}:") | |
| print(f" 📊 النهائي: {score:.3f}") | |
| if mc_score > 0: | |
| print(f" 🎯 مونت كارلو: {mc_score:.3f}") | |
| print(f" 🎯 استراتيجية: {strategy} | نمط: {pattern}") | |
| # الطبقة 3: التحليل بالنموذج الضخم | |
| print("\n🧠 الطبقة 3: التحليل بالنموذج الضخم (LLMService)...") | |
| final_opportunities = [] | |
| for candidate in final_layer2_candidates: | |
| try: | |
| print(f" 🤔 تحليل {candidate['symbol']} بالنموذج الضخم...") | |
| # إرسال كل عملة للنموذج الضخم على حدة | |
| llm_analysis = await llm_service_global.get_trading_decision(candidate) | |
| # ✅ التحقق من وجود قرار صالح من النموذج | |
| if llm_analysis and llm_analysis.get('action') in ['BUY', 'SELL']: | |
| opportunity = { | |
| 'symbol': candidate['symbol'], | |
| 'current_price': candidate.get('current_price', 0), | |
| 'decision': llm_analysis, | |
| 'enhanced_score': candidate.get('enhanced_final_score', 0), | |
| 'llm_confidence': llm_analysis.get('confidence_level', 0), | |
| 'strategy': llm_analysis.get('strategy', 'GENERIC'), | |
| 'analysis_timestamp': datetime.now().isoformat() | |
| } | |
| final_opportunities.append(opportunity) | |
| print(f" ✅ {candidate['symbol']}: {llm_analysis.get('action')} - ثقة: {llm_analysis.get('confidence_level', 0):.2f}") | |
| else: | |
| print(f" ⚠️ {candidate['symbol']}: لا يوجد قرار تداول من النموذج الضخم") | |
| except Exception as e: | |
| print(f"❌ خطأ في تحليل النموذج الضخم لـ {candidate.get('symbol')}: {e}") | |
| continue | |
| if not final_opportunities: | |
| print("❌ لم يتم العثور على فرص تداول مناسبة") | |
| return None | |
| # ترتيب الفرص النهائية حسب الثقة والدرجة | |
| final_opportunities.sort(key=lambda x: (x['llm_confidence'] + x['enhanced_score']) / 2, reverse=True) | |
| print(f"\n🏆 النظام الطبقي اكتمل: {len(final_opportunities)} فرصة تداول") | |
| for i, opportunity in enumerate(final_opportunities[:5]): | |
| print(f" {i+1}. {opportunity['symbol']}: {opportunity['decision'].get('action')} - ثقة: {opportunity['llm_confidence']:.2f}") | |
| return final_opportunities[0] if final_opportunities else None | |
| except Exception as error: | |
| print(f"❌ خطأ في النظام الطبقي: {error}") | |
| import traceback | |
| traceback.print_exc() | |
| return None | |
| async def re_analyze_open_trade_async(trade_data): | |
| """إعادة تحليل الصفقة المفتوحة""" | |
| symbol = trade_data.get('symbol') | |
| try: | |
| async with state_manager.trade_analysis_lock: | |
| # جلب البيانات الحالية | |
| market_context = await data_manager_global.get_market_context_async() | |
| ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols([symbol]) | |
| if not ohlcv_data_list: | |
| return None | |
| ohlcv_data = ohlcv_data_list[0] | |
| ohlcv_data['reasons_for_candidacy'] = ['re-analysis'] | |
| # استخدام ML للتحليل | |
| ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global) | |
| processed_data = await ml_processor.process_and_score_symbol_enhanced(ohlcv_data) | |
| if not processed_data: | |
| return None | |
| # استخدام LLM لإعادة التحليل | |
| re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data) | |
| # ✅ التحقق من وجود قرار صالح من النموذج | |
| if re_analysis_decision: | |
| await r2_service_global.save_system_logs_async({ | |
| "trade_reanalyzed": True, | |
| "symbol": symbol, | |
| "action": re_analysis_decision.get('action'), | |
| "strategy": re_analysis_decision.get('strategy', 'GENERIC') | |
| }) | |
| return { | |
| "symbol": symbol, | |
| "decision": re_analysis_decision, | |
| "current_price": processed_data.get('current_price') | |
| } | |
| else: | |
| print(f"⚠️ لا يوجد قرار إعادة تحليل لـ {symbol}") | |
| return None | |
| except Exception as error: | |
| print(f"❌ Error during trade re-analysis: {error}") | |
| await r2_service_global.save_system_logs_async({ | |
| "reanalysis_error": True, | |
| "symbol": symbol, | |
| "error": str(error) | |
| }) | |
| return None | |
| async def run_bot_cycle_async(): | |
| """دورة التداول الرئيسية""" | |
| try: | |
| if not await state_manager.wait_for_initialization(): | |
| print("❌ الخدمات غير مهيأة بالكامل - تخطي الدورة") | |
| return | |
| print("🔄 بدء دورة التداول...") | |
| await r2_service_global.save_system_logs_async({"cycle_started": True}) | |
| if not r2_service_global.acquire_lock(): | |
| print("❌ فشل الحصول على القفل - تخطي الدورة") | |
| return | |
| try: | |
| open_trades = await trade_manager_global.get_open_trades() | |
| print(f"📋 الصفقات المفتوحة: {len(open_trades)}") | |
| should_look_for_new_trade = len(open_trades) == 0 | |
| # إعادة تحليل الصفقات المفتوحة | |
| if open_trades: | |
| now = datetime.now() | |
| trades_to_reanalyze = [ | |
| trade for trade in open_trades | |
| if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat())) | |
| ] | |
| if trades_to_reanalyze: | |
| print(f"🔄 إعادة تحليل {len(trades_to_reanalyze)} صفقة") | |
| for trade in trades_to_reanalyze: | |
| result = await re_analyze_open_trade_async(trade) | |
| if result and result['decision'].get('action') == "CLOSE_TRADE": | |
| await trade_manager_global.close_trade(trade, result['current_price'], 'CLOSED_BY_REANALYSIS') | |
| should_look_for_new_trade = True | |
| elif result and result['decision'].get('action') == "UPDATE_TRADE": | |
| await trade_manager_global.update_trade(trade, result['decision']) | |
| # البحث عن صفقات جديدة إذا لزم الأمر | |
| if should_look_for_new_trade: | |
| portfolio_state = await r2_service_global.get_portfolio_state_async() | |
| current_capital = portfolio_state.get("current_capital_usd", 0) | |
| if current_capital > 1: | |
| print("🎯 البحث عن فرص تداول جديدة...") | |
| best_opportunity = await run_3_layer_analysis() | |
| if best_opportunity: | |
| print(f"✅ فتح صفقة جديدة: {best_opportunity['symbol']}") | |
| await trade_manager_global.open_trade( | |
| best_opportunity['symbol'], | |
| best_opportunity['decision'], | |
| best_opportunity['current_price'] | |
| ) | |
| else: | |
| print("❌ لم يتم العثور على فرص تداول مناسبة") | |
| else: | |
| print("❌ رأس المال غير كافي لفتح صفقات جديدة") | |
| finally: | |
| r2_service_global.release_lock() | |
| await r2_service_global.save_system_logs_async({ | |
| "cycle_completed": True, | |
| "open_trades": len(open_trades) if 'open_trades' in locals() else 0 | |
| }) | |
| print("✅ اكتملت دورة التداول") | |
| except Exception as error: | |
| print(f"❌ Unhandled error in main cycle: {error}") | |
| await r2_service_global.save_system_logs_async({ | |
| "cycle_error": True, | |
| "error": str(error) | |
| }) | |
| if r2_service_global.lock_acquired: | |
| r2_service_global.release_lock() | |
| async def lifespan(application: FastAPI): | |
| """إدارة دورة حياة التطبيق""" | |
| global r2_service_global, data_manager_global, llm_service_global, learning_engine_global | |
| global trade_manager_global, sentiment_analyzer_global, symbol_whale_monitor_global | |
| initialization_successful = False | |
| try: | |
| print("🚀 بدء تهيئة التطبيق...") | |
| # تهيئة الخدمات | |
| r2_service_global = R2Service() | |
| state_manager.set_service_initialized('r2_service') | |
| contracts_database = await r2_service_global.load_contracts_db_async() | |
| from whale_news_data import EnhancedWhaleMonitor | |
| symbol_whale_monitor_global = EnhancedWhaleMonitor(contracts_database, r2_service_global) | |
| state_manager.set_service_initialized('symbol_whale_monitor') | |
| data_manager_global = DataManager(contracts_database, symbol_whale_monitor_global) | |
| await data_manager_global.initialize() | |
| state_manager.set_service_initialized('data_manager') | |
| llm_service_global = LLMService() | |
| llm_service_global.r2_service = r2_service_global # ✅ ربط R2Service مع LLMService | |
| state_manager.set_service_initialized('llm_service') | |
| sentiment_analyzer_global = SentimentAnalyzer(data_manager_global) | |
| state_manager.set_service_initialized('sentiment_analyzer') | |
| learning_engine_global = LearningEngine(r2_service_global, data_manager_global) | |
| await learning_engine_global.initialize_enhanced() | |
| state_manager.set_service_initialized('learning_engine') | |
| trade_manager_global = TradeManager(r2_service_global, learning_engine_global, data_manager_global) | |
| state_manager.set_service_initialized('trade_manager') | |
| # بدء المهام الخلفية | |
| asyncio.create_task(monitor_market_async()) | |
| asyncio.create_task(trade_manager_global.start_trade_monitoring()) | |
| await r2_service_global.save_system_logs_async({"application_started": True}) | |
| initialization_successful = True | |
| print("🎯 التطبيق جاهز للعمل - نظام الطبقات 3 فعال") | |
| yield | |
| except Exception as error: | |
| print(f"❌ Application startup failed: {error}") | |
| if r2_service_global: | |
| await r2_service_global.save_system_logs_async({ | |
| "application_startup_failed": True, | |
| "error": str(error) | |
| }) | |
| raise | |
| finally: | |
| await cleanup_on_shutdown() | |
| application = FastAPI(lifespan=lifespan) | |
| async def run_cycle_api(): | |
| """تشغيل دورة التداول""" | |
| if not state_manager.initialization_complete: | |
| raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") | |
| asyncio.create_task(run_bot_cycle_async()) | |
| return {"message": "Bot cycle initiated", "system": "3-Layer Analysis"} | |
| async def health_check(): | |
| """فحص صحة النظام""" | |
| services_status = { | |
| "status": "healthy" if state_manager.initialization_complete else "initializing", | |
| "initialization_complete": state_manager.initialization_complete, | |
| "services_initialized": state_manager.services_initialized, | |
| "timestamp": datetime.now().isoformat(), | |
| "system_architecture": "3-Layer Analysis System", | |
| "layers": { | |
| "layer1": "Data Manager - Rapid Screening", | |
| "layer2": "ML Processor - Advanced Analysis", | |
| "layer3": "LLM Service - Deep Analysis" | |
| } | |
| } | |
| return services_status | |
| async def analyze_market_api(): | |
| """تشغيل التحليل الطبقي فقط""" | |
| if not state_manager.initialization_complete: | |
| raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") | |
| result = await run_3_layer_analysis() | |
| if result: | |
| return { | |
| "opportunity_found": True, | |
| "symbol": result['symbol'], | |
| "action": result['decision'].get('action'), | |
| "confidence": result['llm_confidence'], | |
| "strategy": result['strategy'] | |
| } | |
| else: | |
| return {"opportunity_found": False, "message": "No suitable opportunities found"} | |
| async def get_portfolio_api(): | |
| """الحصول على حالة المحفظة""" | |
| if not state_manager.initialization_complete: | |
| raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") | |
| try: | |
| portfolio_state = await r2_service_global.get_portfolio_state_async() | |
| open_trades = await trade_manager_global.get_open_trades() | |
| return { | |
| "portfolio": portfolio_state, | |
| "open_trades": open_trades, | |
| "timestamp": datetime.now().isoformat() | |
| } | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"خطأ في جلب بيانات المحفظة: {str(e)}") | |
| async def get_system_status(): | |
| """الحصول على حالة النظام التفصيلية""" | |
| monitoring_status = trade_manager_global.get_monitoring_status() if trade_manager_global else {} | |
| return { | |
| "initialization_complete": state_manager.initialization_complete, | |
| "services_initialized": state_manager.services_initialized, | |
| "market_state_ok": state.MARKET_STATE_OK, | |
| "monitoring_status": monitoring_status, | |
| "timestamp": datetime.now().isoformat() | |
| } | |
| async def cleanup_on_shutdown(): | |
| """تنظيف الموارد عند الإغلاق""" | |
| global r2_service_global, data_manager_global, trade_manager_global, learning_engine_global | |
| print("🛑 Shutdown signal received. Cleaning up...") | |
| if trade_manager_global: | |
| trade_manager_global.stop_monitoring() | |
| print("✅ Trade monitoring stopped") | |
| if learning_engine_global and learning_engine_global.initialized: | |
| try: | |
| await learning_engine_global.save_weights_to_r2() | |
| await learning_engine_global.save_performance_history() | |
| print("✅ Learning engine data saved") | |
| except Exception as e: | |
| print(f"❌ Failed to save learning engine data: {e}") | |
| if data_manager_global: | |
| await data_manager_global.close() | |
| print("✅ Data manager closed") | |
| if r2_service_global: | |
| try: | |
| await r2_service_global.save_system_logs_async({"application_shutdown": True}) | |
| print("✅ Shutdown log saved") | |
| except Exception as e: | |
| print(f"❌ Failed to save shutdown log: {e}") | |
| if r2_service_global.lock_acquired: | |
| r2_service_global.release_lock() | |
| print("✅ R2 lock released") | |
| def signal_handler(signum, frame): | |
| """معالج إشارات الإغلاق""" | |
| print(f"🛑 Received signal {signum}. Initiating shutdown...") | |
| asyncio.create_task(cleanup_on_shutdown()) | |
| sys.exit(0) | |
| # تسجيل معالجات الإشارات | |
| signal.signal(signal.SIGINT, signal_handler) | |
| signal.signal(signal.SIGTERM, signal_handler) | |
| if __name__ == "__main__": | |
| print("🚀 Starting AI Trading Bot with 3-Layer Analysis System...") | |
| uvicorn.run(application, host="0.0.0.0", port=7860, log_level="info") |