Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,26 +17,25 @@ import json
|
|
| 17 |
import state
|
| 18 |
import re
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
TOP_N_SYMBOLS = 100
|
| 22 |
OPPORTUNITY_COUNT = 10
|
| 23 |
CHUNK_SIZE = 5
|
| 24 |
|
| 25 |
-
# المتغيرات العامة للنظام
|
| 26 |
r2_service_global = None
|
| 27 |
data_manager_global = None
|
| 28 |
llm_service_global = None
|
| 29 |
learning_engine_global = None
|
| 30 |
realtime_monitor = None
|
| 31 |
|
| 32 |
-
# Real-time trade monitoring with enhanced risk management
|
| 33 |
class RealTimeTradeMonitor:
|
| 34 |
def __init__(self):
|
| 35 |
self.monitoring_tasks = {}
|
| 36 |
self.is_running = False
|
| 37 |
|
| 38 |
async def start_monitoring(self):
|
| 39 |
-
"""بدء مراقبة جميع الصفقات المفتوحة"""
|
| 40 |
self.is_running = True
|
| 41 |
print("🔍 Starting real-time trade monitoring...")
|
| 42 |
|
|
@@ -62,7 +61,6 @@ class RealTimeTradeMonitor:
|
|
| 62 |
await asyncio.sleep(30)
|
| 63 |
|
| 64 |
async def _monitor_single_trade(self, trade):
|
| 65 |
-
"""مراقبة صفقة فردية في الوقت الحقيقي"""
|
| 66 |
symbol = trade['symbol']
|
| 67 |
strategy = trade.get('strategy', 'GENERIC')
|
| 68 |
print(f"📊 Starting real-time monitoring for {symbol} (Strategy: {strategy})")
|
|
@@ -121,13 +119,11 @@ class RealTimeTradeMonitor:
|
|
| 121 |
await asyncio.sleep(30)
|
| 122 |
|
| 123 |
def stop_monitoring(self):
|
| 124 |
-
"""إيقاف جميع مهام المراقبة"""
|
| 125 |
self.is_running = False
|
| 126 |
self.monitoring_tasks.clear()
|
| 127 |
print("🛑 Real-time trade monitoring stopped")
|
| 128 |
|
| 129 |
async def monitor_market_async():
|
| 130 |
-
"""Background task to continuously monitor market health"""
|
| 131 |
global data_manager_global
|
| 132 |
|
| 133 |
init_attempts = 0
|
|
@@ -161,7 +157,6 @@ async def monitor_market_async():
|
|
| 161 |
is_critical = whale_analysis.get('critical_alert', False)
|
| 162 |
total_volume = whale_analysis.get('total_volume_usd', 0)
|
| 163 |
|
| 164 |
-
# 🆕 استخدام البيانات المحسنة من data_manager
|
| 165 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 166 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 167 |
flow_direction = netflow_analysis.get('flow_direction', 'BALANCED')
|
|
@@ -177,7 +172,6 @@ async def monitor_market_async():
|
|
| 177 |
should_halt_trading = False
|
| 178 |
halt_reason = ""
|
| 179 |
|
| 180 |
-
# 🆕 تحسين شروط إيقاف التداول بناءً على البيانات المحسنة
|
| 181 |
if is_critical:
|
| 182 |
should_halt_trading = True
|
| 183 |
halt_reason = f"CRITICAL whale activity detected: {whale_analysis.get('description')}"
|
|
@@ -216,7 +210,6 @@ async def monitor_market_async():
|
|
| 216 |
await asyncio.sleep(60)
|
| 217 |
|
| 218 |
async def get_fallback_market_context():
|
| 219 |
-
"""Fallback function when main market context fails"""
|
| 220 |
return {
|
| 221 |
'timestamp': datetime.now().isoformat(),
|
| 222 |
'general_whale_activity': {
|
|
@@ -235,22 +228,7 @@ async def get_fallback_market_context():
|
|
| 235 |
'fear_and_greed_index': 50
|
| 236 |
}
|
| 237 |
|
| 238 |
-
def safe_float_conversion(value, default=0.0):
|
| 239 |
-
"""تحويل آمن للقيم إلى أرقام"""
|
| 240 |
-
try:
|
| 241 |
-
if value is None:
|
| 242 |
-
return default
|
| 243 |
-
if isinstance(value, (int, float)):
|
| 244 |
-
return float(value)
|
| 245 |
-
if isinstance(value, str):
|
| 246 |
-
cleaned = ''.join(character for character in value if character.isdigit() or character in '.-')
|
| 247 |
-
return float(cleaned) if cleaned else default
|
| 248 |
-
return default
|
| 249 |
-
except (ValueError, TypeError):
|
| 250 |
-
return default
|
| 251 |
-
|
| 252 |
async def validate_candidate_data_enhanced(candidate):
|
| 253 |
-
"""✨ تحسين التحقق من جودة المرشحين"""
|
| 254 |
try:
|
| 255 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
| 256 |
|
|
@@ -281,7 +259,6 @@ async def validate_candidate_data_enhanced(candidate):
|
|
| 281 |
if 'recommended_strategy' not in candidate:
|
| 282 |
candidate['recommended_strategy'] = 'unknown'
|
| 283 |
|
| 284 |
-
# ✅ الإصلاح: التأكد من وجود استراتيجية مستهدفة صالحة
|
| 285 |
if 'target_strategy' not in candidate or not candidate['target_strategy'] or candidate['target_strategy'] == 'unknown':
|
| 286 |
candidate['target_strategy'] = 'GENERIC'
|
| 287 |
|
|
@@ -292,9 +269,7 @@ async def validate_candidate_data_enhanced(candidate):
|
|
| 292 |
return False
|
| 293 |
|
| 294 |
async def analyze_market_strategy(market_context):
|
| 295 |
-
"""تحديد الاستراتيجية المثلى بناءً على ظروف السوق المحسنة"""
|
| 296 |
try:
|
| 297 |
-
# 🆕 استخدام البيانات المحسنة من data_manager
|
| 298 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 299 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 300 |
trading_signals = whale_analysis.get('trading_signals', [])
|
|
@@ -347,7 +322,6 @@ async def analyze_market_strategy(market_context):
|
|
| 347 |
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 348 |
strategy_data = json.loads(json_match.group())
|
| 349 |
except:
|
| 350 |
-
# 🆕 الاستراتيجية الافتراضية المحسنة بناءً على تحليل صافي التدفق
|
| 351 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 352 |
if net_flow > 1000000:
|
| 353 |
fallback_strategy = "AGGRESSIVE_GROWTH"
|
|
@@ -381,16 +355,13 @@ async def analyze_market_strategy(market_context):
|
|
| 381 |
}
|
| 382 |
|
| 383 |
async def find_strategy_specific_candidates(strategy, scan_count):
|
| 384 |
-
"""✨ نظام فلترة ذكي يستخدم الاستراتيجيات المتخصصة - مع دعم البيانات المحسنة"""
|
| 385 |
try:
|
| 386 |
-
# 1. جلب قائمة المرشحين الأولية
|
| 387 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 388 |
|
| 389 |
if not all_candidates:
|
| 390 |
print(f"⚠️ الماسح العام لم يجد أي مرشحين أوليين.")
|
| 391 |
return []
|
| 392 |
|
| 393 |
-
# 2. تحديث market_context قبل المعالجة
|
| 394 |
market_context = await data_manager_global.get_market_context_async()
|
| 395 |
if not market_context:
|
| 396 |
print("❌ Failed to get market context for strategy analysis")
|
|
@@ -399,21 +370,18 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 399 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 400 |
|
| 401 |
processed_candidates = []
|
| 402 |
-
for candidate in all_candidates[:30]:
|
| 403 |
try:
|
| 404 |
-
# تحويل البيانات الخام إلى بيانات معالجة
|
| 405 |
symbol_with_reasons = [{'symbol': candidate['symbol'], 'reasons': candidate.get('reasons', [])}]
|
| 406 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 407 |
|
| 408 |
if ohlcv_data and ohlcv_data[0]:
|
| 409 |
-
# ✅ تحديث market_context قبل كل معالجة لمنع الخطأ
|
| 410 |
try:
|
| 411 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 412 |
if updated_market_context:
|
| 413 |
feature_processor.market_context = updated_market_context
|
| 414 |
except Exception as e:
|
| 415 |
print(f"⚠️ Failed to update market context for {candidate['symbol']}: {e}")
|
| 416 |
-
# الاستمرار بالسياق القديم إذا فشل التحديث
|
| 417 |
|
| 418 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 419 |
if processed:
|
|
@@ -425,34 +393,28 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 425 |
print("⚠️ لم يتم معالجة أي مرشح بنجاح")
|
| 426 |
return []
|
| 427 |
|
| 428 |
-
# 3. فرز المرشحين حسب الاستراتيجية المطلوبة
|
| 429 |
if strategy != 'GENERIC':
|
| 430 |
-
# تحديد أفضل المرشحين للاستراتيجية المحددة
|
| 431 |
strategy_candidates = []
|
| 432 |
for candidate in processed_candidates:
|
| 433 |
-
# ✅ استخدام الدرجات الأساسية بدلاً من المرجحة
|
| 434 |
base_scores = candidate.get('base_strategy_scores', {})
|
| 435 |
strategy_score = base_scores.get(strategy, 0)
|
| 436 |
|
| 437 |
-
|
| 438 |
-
if strategy_score > 0.2: # ⬇️ تخفيض من 0.4 إلى 0.2
|
| 439 |
candidate['strategy_match_score'] = strategy_score
|
| 440 |
strategy_candidates.append(candidate)
|
| 441 |
print(f"✅ {candidate['symbol']} مناسب لـ {strategy} (درجة: {strategy_score:.3f})")
|
| 442 |
|
| 443 |
-
# فرز حسب تطابق الاستراتيجية
|
| 444 |
sorted_candidates = sorted(strategy_candidates,
|
| 445 |
key=lambda x: x.get('strategy_match_score', 0),
|
| 446 |
reverse=True)
|
| 447 |
-
top_candidates = sorted_candidates[:15]
|
| 448 |
|
| 449 |
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا لاستراتيجية {strategy}")
|
| 450 |
else:
|
| 451 |
-
# للاستراتيجية العامة، استخدم النقاط المحسنة
|
| 452 |
sorted_candidates = sorted(processed_candidates,
|
| 453 |
key=lambda x: x.get('enhanced_final_score', 0),
|
| 454 |
reverse=True)
|
| 455 |
-
top_candidates = sorted_candidates[:15]
|
| 456 |
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا للاستراتيجية العامة")
|
| 457 |
|
| 458 |
return top_candidates
|
|
@@ -463,7 +425,6 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 463 |
return []
|
| 464 |
|
| 465 |
async def find_new_opportunities_async():
|
| 466 |
-
"""✨ NEW: المسح المحسن باستراتيجية مسبقة مع عتبات مخفضة ودعم البيانات المحسنة"""
|
| 467 |
print("🔍 Scanning for new opportunities with enhanced data analysis...")
|
| 468 |
try:
|
| 469 |
await r2_service_global.save_system_logs_async({
|
|
@@ -491,7 +452,6 @@ async def find_new_opportunities_async():
|
|
| 491 |
|
| 492 |
if not high_potential_candidates:
|
| 493 |
print("🔄 لا توجد مرشحين متخصصين، جلب مرشحين عامين...")
|
| 494 |
-
# ✅ استرجاع مرشحين عامين كبديل
|
| 495 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 496 |
if high_potential_candidates:
|
| 497 |
for candidate in high_potential_candidates:
|
|
@@ -512,10 +472,9 @@ async def find_new_opportunities_async():
|
|
| 512 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
| 513 |
|
| 514 |
print(f"⏳ Processing and scoring chunk {index//CHUNK_SIZE + 1}...")
|
| 515 |
-
# ✅ تحديث market_context قبل معالجة كل شريحة
|
| 516 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 517 |
if not updated_market_context:
|
| 518 |
-
updated_market_context = market_context
|
| 519 |
|
| 520 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 521 |
|
|
@@ -530,7 +489,6 @@ async def find_new_opportunities_async():
|
|
| 530 |
print("❌ No candidates were processed successfully.")
|
| 531 |
return
|
| 532 |
|
| 533 |
-
# ✅ استخدام السياق المحدث للتصفية النهائية
|
| 534 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 535 |
if not updated_market_context:
|
| 536 |
updated_market_context = market_context
|
|
@@ -578,11 +536,9 @@ async def find_new_opportunities_async():
|
|
| 578 |
continue
|
| 579 |
|
| 580 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
| 581 |
-
# ✅ التحقق النهائي من الاستراتيجية
|
| 582 |
final_strategy = llm_analysis_data.get('strategy')
|
| 583 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 584 |
|
| 585 |
-
# إذا كانت استراتيجية LLM غير صالحة، استخدم استراتيجية المرشح
|
| 586 |
if not final_strategy or final_strategy == 'unknown' or final_strategy == 'GENERIC':
|
| 587 |
final_strategy = candidate_strategy
|
| 588 |
llm_analysis_data['strategy'] = final_strategy
|
|
@@ -633,7 +589,6 @@ async def find_new_opportunities_async():
|
|
| 633 |
return None
|
| 634 |
|
| 635 |
async def re_analyze_open_trade_async(trade_data):
|
| 636 |
-
"""Re-analyzes an open trade with enhanced strategy preservation and improved data integration"""
|
| 637 |
symbol = trade_data.get('symbol')
|
| 638 |
|
| 639 |
try:
|
|
@@ -643,7 +598,6 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 643 |
|
| 644 |
print(f"⏳ Re-analyzing trade: {symbol} (held for {hold_minutes:.1f} minutes)")
|
| 645 |
|
| 646 |
-
# ✅ الإصلاح المحسن: الحفاظ على الاستراتيجية الأصلية مع التحقق الشامل
|
| 647 |
original_strategy = trade_data.get('strategy')
|
| 648 |
if not original_strategy or original_strategy == 'unknown':
|
| 649 |
original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
|
|
@@ -673,7 +627,6 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 673 |
return None
|
| 674 |
|
| 675 |
raw_data = ohlcv_data_list[0]
|
| 676 |
-
# ✅ تحديث market_context قبل المعالجة
|
| 677 |
try:
|
| 678 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 679 |
if updated_market_context:
|
|
@@ -708,7 +661,6 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 708 |
|
| 709 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 710 |
|
| 711 |
-
# ✅ الإصلاح النهائي: التأكد من وجود الاستراتيجية في القرار النهائي
|
| 712 |
if not final_decision.get('strategy') or final_decision['strategy'] == 'unknown':
|
| 713 |
final_decision['strategy'] = original_strategy
|
| 714 |
print(f"🔧 Final re-analysis strategy fix for {symbol}: {original_strategy}")
|
|
@@ -743,29 +695,7 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 743 |
})
|
| 744 |
return None
|
| 745 |
|
| 746 |
-
def _apply_patience_logic(decision, hold_minutes, trade_data, processed_data):
|
| 747 |
-
"""Apply patience logic to prevent premature selling decisions"""
|
| 748 |
-
action = decision.get('action')
|
| 749 |
-
|
| 750 |
-
if action == "CLOSE_TRADE" and hold_minutes < 20:
|
| 751 |
-
current_price = processed_data.get('current_price', 0)
|
| 752 |
-
entry_price = trade_data.get('entry_price', 0)
|
| 753 |
-
|
| 754 |
-
try:
|
| 755 |
-
profit_loss_percent = ((current_price - entry_price) / entry_price) * 100
|
| 756 |
-
except (TypeError, ZeroDivisionError):
|
| 757 |
-
profit_loss_percent = 0
|
| 758 |
-
|
| 759 |
-
if profit_loss_percent < 2:
|
| 760 |
-
print(f"🛑 Blocked premature selling! Only {hold_minutes:.1f} minutes held, PnL: {profit_loss_percent:.2f}%")
|
| 761 |
-
decision['action'] = "HOLD"
|
| 762 |
-
decision['reasoning'] = f"Patience Filter: Blocked premature sell. Held for {hold_minutes:.1f}m. Giving trade more time."
|
| 763 |
-
return decision
|
| 764 |
-
|
| 765 |
-
return decision
|
| 766 |
-
|
| 767 |
async def run_bot_cycle_async():
|
| 768 |
-
"""The main asynchronous bot cycle with enhanced strategy validation and improved data integration"""
|
| 769 |
print(f"\n{'='*70}")
|
| 770 |
print(f"⏳ New cycle initiated at: {datetime.now().isoformat()}")
|
| 771 |
print(f"{'='*70}")
|
|
@@ -785,7 +715,6 @@ async def run_bot_cycle_async():
|
|
| 785 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 786 |
print(f"✅ Found {len(open_trades)} open trade(s).")
|
| 787 |
|
| 788 |
-
# ✅ الإصلاح المحسن: فحص وإصلاح الاستراتيجيات الفارغة في الصفقات المفتوحة
|
| 789 |
trades_fixed = 0
|
| 790 |
for trade in open_trades:
|
| 791 |
if not trade.get('strategy') or trade['strategy'] == 'unknown':
|
|
@@ -832,19 +761,15 @@ async def run_bot_cycle_async():
|
|
| 832 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 833 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
| 834 |
|
| 835 |
-
# ✅ الإصلاح الحاسم: التحقق من رأس المال المتاح بشكل صحيح
|
| 836 |
print(f"💰 Current available capital: ${current_capital:.2f}")
|
| 837 |
|
| 838 |
-
# إذا كان رأس المال 0، نتحقق مما إذا كان هناك خطأ في الحساب
|
| 839 |
if current_capital <= 0:
|
| 840 |
print("⚠️ Current capital is 0. Checking for potential calculation errors...")
|
| 841 |
|
| 842 |
-
# التحقق من وجود صفقات مفتوحة
|
| 843 |
if len(open_trades) == 0:
|
| 844 |
print("🔄 No open trades but capital is 0. This might be an error.")
|
| 845 |
print("💡 Attempting to recover capital state...")
|
| 846 |
|
| 847 |
-
# محاولة استعادة رأس المال من الحالة الأولية
|
| 848 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
| 849 |
if initial_capital > 0:
|
| 850 |
portfolio_state["current_capital_usd"] = initial_capital
|
|
@@ -859,7 +784,6 @@ async def run_bot_cycle_async():
|
|
| 859 |
if new_opportunity:
|
| 860 |
print(f"✅ Opportunity for {new_opportunity['symbol']} confirmed! Saving trade. Strategy: {new_opportunity.get('strategy')}")
|
| 861 |
|
| 862 |
-
# ✅ التحقق النهائي قبل الحفظ
|
| 863 |
if not new_opportunity['decision'].get('strategy'):
|
| 864 |
new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
|
| 865 |
print(f"🔧 Final pre-save strategy fix: {new_opportunity['decision']['strategy']}")
|
|
@@ -912,14 +836,11 @@ async def lifespan(application: FastAPI):
|
|
| 912 |
data_manager_global = DataManager(contracts_database)
|
| 913 |
await data_manager_global.initialize()
|
| 914 |
|
| 915 |
-
# ✅ تهيئة نظام التعلم مع تمرير data_manager
|
| 916 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 917 |
-
await learning_engine_global.initialize_enhanced()
|
| 918 |
|
| 919 |
-
# ✅ إجبار تحديث الاستراتيجيات من البيانات الحالية
|
| 920 |
await learning_engine_global.force_strategy_learning()
|
| 921 |
|
| 922 |
-
# ✅ التحقق من أن الأوزان يتم تحميلها
|
| 923 |
if learning_engine_global.initialized:
|
| 924 |
weights = await learning_engine_global.get_optimized_strategy_weights("bull_market")
|
| 925 |
print(f"🎯 الأوزان المحملة: {weights}")
|
|
@@ -954,18 +875,15 @@ application = FastAPI(lifespan=lifespan)
|
|
| 954 |
|
| 955 |
@application.get("/run-cycle")
|
| 956 |
async def run_cycle_api():
|
| 957 |
-
"""API endpoint to trigger the bot cycle."""
|
| 958 |
asyncio.create_task(run_bot_cycle_async())
|
| 959 |
return {"message": "Bot cycle initiated in the background."}
|
| 960 |
|
| 961 |
@application.get("/health")
|
| 962 |
async def health_check():
|
| 963 |
-
"""Detailed health check."""
|
| 964 |
learning_metrics = {}
|
| 965 |
if learning_engine_global and learning_engine_global.initialized:
|
| 966 |
learning_metrics = await learning_engine_global.calculate_performance_metrics()
|
| 967 |
|
| 968 |
-
# 🆕 الحصول على إحصائيات استخدام API المحسنة
|
| 969 |
api_stats = {}
|
| 970 |
if data_manager_global:
|
| 971 |
api_stats = data_manager_global.get_performance_stats()
|
|
@@ -982,12 +900,11 @@ async def health_check():
|
|
| 982 |
},
|
| 983 |
"market_state_ok": state.MARKET_STATE_OK,
|
| 984 |
"learning_engine": learning_metrics,
|
| 985 |
-
"api_usage_stats": api_stats.get('api_usage', {})
|
| 986 |
}
|
| 987 |
|
| 988 |
@application.get("/stats")
|
| 989 |
async def get_performance_stats():
|
| 990 |
-
"""Get performance statistics for all services."""
|
| 991 |
try:
|
| 992 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
| 993 |
|
|
@@ -997,14 +914,13 @@ async def get_performance_stats():
|
|
| 997 |
learning_stats = await learning_engine_global.calculate_performance_metrics()
|
| 998 |
improvement_suggestions = await learning_engine_global.suggest_improvements()
|
| 999 |
|
| 1000 |
-
# 🆕 الحصول على إحصائيات API المحسنة
|
| 1001 |
api_stats = {}
|
| 1002 |
if data_manager_global:
|
| 1003 |
api_stats = data_manager_global.get_performance_stats()
|
| 1004 |
|
| 1005 |
stats = {
|
| 1006 |
"timestamp": datetime.now().isoformat(),
|
| 1007 |
-
"data_manager": api_stats,
|
| 1008 |
"market_state": {
|
| 1009 |
"is_healthy": state.MARKET_STATE_OK,
|
| 1010 |
"description": "Market is healthy for trading" if state.MARKET_STATE_OK else "Market conditions are unfavorable",
|
|
@@ -1016,7 +932,7 @@ async def get_performance_stats():
|
|
| 1016 |
},
|
| 1017 |
"learning_engine": learning_stats,
|
| 1018 |
"improvement_suggestions": improvement_suggestions,
|
| 1019 |
-
"enhanced_features": {
|
| 1020 |
"netflow_analysis": True,
|
| 1021 |
"enhanced_whale_tracking": True,
|
| 1022 |
"dynamic_strategy_selection": True
|
|
@@ -1028,7 +944,6 @@ async def get_performance_stats():
|
|
| 1028 |
|
| 1029 |
@application.get("/logs/status")
|
| 1030 |
async def get_logs_status():
|
| 1031 |
-
"""Get status of logging system."""
|
| 1032 |
try:
|
| 1033 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 1034 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
|
@@ -1039,13 +954,12 @@ async def get_logs_status():
|
|
| 1039 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 1040 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 1041 |
"timestamp": datetime.now().isoformat(),
|
| 1042 |
-
"enhanced_analysis": True
|
| 1043 |
}
|
| 1044 |
except Exception as error:
|
| 1045 |
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
| 1046 |
|
| 1047 |
async def cleanup_on_shutdown():
|
| 1048 |
-
"""Cleanup function for graceful shutdown."""
|
| 1049 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 1050 |
print("\n🛑 Shutdown signal received. Cleaning up...")
|
| 1051 |
|
|
@@ -1077,7 +991,6 @@ async def cleanup_on_shutdown():
|
|
| 1077 |
print("✅ Cleanup completed.")
|
| 1078 |
|
| 1079 |
def signal_handler(signum, frame):
|
| 1080 |
-
"""Handle shutdown signals."""
|
| 1081 |
print(f"\n⚠️ Received signal {signum}")
|
| 1082 |
asyncio.create_task(cleanup_on_shutdown())
|
| 1083 |
sys.exit(0)
|
|
|
|
| 17 |
import state
|
| 18 |
import re
|
| 19 |
|
| 20 |
+
from whale_news_data import whale_monitor_global
|
| 21 |
+
from helpers import safe_float_conversion, _apply_patience_logic
|
| 22 |
+
|
| 23 |
TOP_N_SYMBOLS = 100
|
| 24 |
OPPORTUNITY_COUNT = 10
|
| 25 |
CHUNK_SIZE = 5
|
| 26 |
|
|
|
|
| 27 |
r2_service_global = None
|
| 28 |
data_manager_global = None
|
| 29 |
llm_service_global = None
|
| 30 |
learning_engine_global = None
|
| 31 |
realtime_monitor = None
|
| 32 |
|
|
|
|
| 33 |
class RealTimeTradeMonitor:
|
| 34 |
def __init__(self):
|
| 35 |
self.monitoring_tasks = {}
|
| 36 |
self.is_running = False
|
| 37 |
|
| 38 |
async def start_monitoring(self):
|
|
|
|
| 39 |
self.is_running = True
|
| 40 |
print("🔍 Starting real-time trade monitoring...")
|
| 41 |
|
|
|
|
| 61 |
await asyncio.sleep(30)
|
| 62 |
|
| 63 |
async def _monitor_single_trade(self, trade):
|
|
|
|
| 64 |
symbol = trade['symbol']
|
| 65 |
strategy = trade.get('strategy', 'GENERIC')
|
| 66 |
print(f"📊 Starting real-time monitoring for {symbol} (Strategy: {strategy})")
|
|
|
|
| 119 |
await asyncio.sleep(30)
|
| 120 |
|
| 121 |
def stop_monitoring(self):
|
|
|
|
| 122 |
self.is_running = False
|
| 123 |
self.monitoring_tasks.clear()
|
| 124 |
print("🛑 Real-time trade monitoring stopped")
|
| 125 |
|
| 126 |
async def monitor_market_async():
|
|
|
|
| 127 |
global data_manager_global
|
| 128 |
|
| 129 |
init_attempts = 0
|
|
|
|
| 157 |
is_critical = whale_analysis.get('critical_alert', False)
|
| 158 |
total_volume = whale_analysis.get('total_volume_usd', 0)
|
| 159 |
|
|
|
|
| 160 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 161 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 162 |
flow_direction = netflow_analysis.get('flow_direction', 'BALANCED')
|
|
|
|
| 172 |
should_halt_trading = False
|
| 173 |
halt_reason = ""
|
| 174 |
|
|
|
|
| 175 |
if is_critical:
|
| 176 |
should_halt_trading = True
|
| 177 |
halt_reason = f"CRITICAL whale activity detected: {whale_analysis.get('description')}"
|
|
|
|
| 210 |
await asyncio.sleep(60)
|
| 211 |
|
| 212 |
async def get_fallback_market_context():
|
|
|
|
| 213 |
return {
|
| 214 |
'timestamp': datetime.now().isoformat(),
|
| 215 |
'general_whale_activity': {
|
|
|
|
| 228 |
'fear_and_greed_index': 50
|
| 229 |
}
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
async def validate_candidate_data_enhanced(candidate):
|
|
|
|
| 232 |
try:
|
| 233 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
| 234 |
|
|
|
|
| 259 |
if 'recommended_strategy' not in candidate:
|
| 260 |
candidate['recommended_strategy'] = 'unknown'
|
| 261 |
|
|
|
|
| 262 |
if 'target_strategy' not in candidate or not candidate['target_strategy'] or candidate['target_strategy'] == 'unknown':
|
| 263 |
candidate['target_strategy'] = 'GENERIC'
|
| 264 |
|
|
|
|
| 269 |
return False
|
| 270 |
|
| 271 |
async def analyze_market_strategy(market_context):
|
|
|
|
| 272 |
try:
|
|
|
|
| 273 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 274 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 275 |
trading_signals = whale_analysis.get('trading_signals', [])
|
|
|
|
| 322 |
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 323 |
strategy_data = json.loads(json_match.group())
|
| 324 |
except:
|
|
|
|
| 325 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 326 |
if net_flow > 1000000:
|
| 327 |
fallback_strategy = "AGGRESSIVE_GROWTH"
|
|
|
|
| 355 |
}
|
| 356 |
|
| 357 |
async def find_strategy_specific_candidates(strategy, scan_count):
|
|
|
|
| 358 |
try:
|
|
|
|
| 359 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 360 |
|
| 361 |
if not all_candidates:
|
| 362 |
print(f"⚠️ الماسح العام لم يجد أي مرشحين أوليين.")
|
| 363 |
return []
|
| 364 |
|
|
|
|
| 365 |
market_context = await data_manager_global.get_market_context_async()
|
| 366 |
if not market_context:
|
| 367 |
print("❌ Failed to get market context for strategy analysis")
|
|
|
|
| 370 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 371 |
|
| 372 |
processed_candidates = []
|
| 373 |
+
for candidate in all_candidates[:30]:
|
| 374 |
try:
|
|
|
|
| 375 |
symbol_with_reasons = [{'symbol': candidate['symbol'], 'reasons': candidate.get('reasons', [])}]
|
| 376 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 377 |
|
| 378 |
if ohlcv_data and ohlcv_data[0]:
|
|
|
|
| 379 |
try:
|
| 380 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 381 |
if updated_market_context:
|
| 382 |
feature_processor.market_context = updated_market_context
|
| 383 |
except Exception as e:
|
| 384 |
print(f"⚠️ Failed to update market context for {candidate['symbol']}: {e}")
|
|
|
|
| 385 |
|
| 386 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 387 |
if processed:
|
|
|
|
| 393 |
print("⚠️ لم يتم معالجة أي مرشح بنجاح")
|
| 394 |
return []
|
| 395 |
|
|
|
|
| 396 |
if strategy != 'GENERIC':
|
|
|
|
| 397 |
strategy_candidates = []
|
| 398 |
for candidate in processed_candidates:
|
|
|
|
| 399 |
base_scores = candidate.get('base_strategy_scores', {})
|
| 400 |
strategy_score = base_scores.get(strategy, 0)
|
| 401 |
|
| 402 |
+
if strategy_score > 0.2:
|
|
|
|
| 403 |
candidate['strategy_match_score'] = strategy_score
|
| 404 |
strategy_candidates.append(candidate)
|
| 405 |
print(f"✅ {candidate['symbol']} مناسب لـ {strategy} (درجة: {strategy_score:.3f})")
|
| 406 |
|
|
|
|
| 407 |
sorted_candidates = sorted(strategy_candidates,
|
| 408 |
key=lambda x: x.get('strategy_match_score', 0),
|
| 409 |
reverse=True)
|
| 410 |
+
top_candidates = sorted_candidates[:15]
|
| 411 |
|
| 412 |
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا لاستراتيجية {strategy}")
|
| 413 |
else:
|
|
|
|
| 414 |
sorted_candidates = sorted(processed_candidates,
|
| 415 |
key=lambda x: x.get('enhanced_final_score', 0),
|
| 416 |
reverse=True)
|
| 417 |
+
top_candidates = sorted_candidates[:15]
|
| 418 |
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا للاستراتيجية العامة")
|
| 419 |
|
| 420 |
return top_candidates
|
|
|
|
| 425 |
return []
|
| 426 |
|
| 427 |
async def find_new_opportunities_async():
|
|
|
|
| 428 |
print("🔍 Scanning for new opportunities with enhanced data analysis...")
|
| 429 |
try:
|
| 430 |
await r2_service_global.save_system_logs_async({
|
|
|
|
| 452 |
|
| 453 |
if not high_potential_candidates:
|
| 454 |
print("🔄 لا توجد مرشحين متخصصين، جلب مرشحين عامين...")
|
|
|
|
| 455 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 456 |
if high_potential_candidates:
|
| 457 |
for candidate in high_potential_candidates:
|
|
|
|
| 472 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
| 473 |
|
| 474 |
print(f"⏳ Processing and scoring chunk {index//CHUNK_SIZE + 1}...")
|
|
|
|
| 475 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 476 |
if not updated_market_context:
|
| 477 |
+
updated_market_context = market_context
|
| 478 |
|
| 479 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 480 |
|
|
|
|
| 489 |
print("❌ No candidates were processed successfully.")
|
| 490 |
return
|
| 491 |
|
|
|
|
| 492 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 493 |
if not updated_market_context:
|
| 494 |
updated_market_context = market_context
|
|
|
|
| 536 |
continue
|
| 537 |
|
| 538 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
|
|
|
| 539 |
final_strategy = llm_analysis_data.get('strategy')
|
| 540 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 541 |
|
|
|
|
| 542 |
if not final_strategy or final_strategy == 'unknown' or final_strategy == 'GENERIC':
|
| 543 |
final_strategy = candidate_strategy
|
| 544 |
llm_analysis_data['strategy'] = final_strategy
|
|
|
|
| 589 |
return None
|
| 590 |
|
| 591 |
async def re_analyze_open_trade_async(trade_data):
|
|
|
|
| 592 |
symbol = trade_data.get('symbol')
|
| 593 |
|
| 594 |
try:
|
|
|
|
| 598 |
|
| 599 |
print(f"⏳ Re-analyzing trade: {symbol} (held for {hold_minutes:.1f} minutes)")
|
| 600 |
|
|
|
|
| 601 |
original_strategy = trade_data.get('strategy')
|
| 602 |
if not original_strategy or original_strategy == 'unknown':
|
| 603 |
original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
|
|
|
|
| 627 |
return None
|
| 628 |
|
| 629 |
raw_data = ohlcv_data_list[0]
|
|
|
|
| 630 |
try:
|
| 631 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 632 |
if updated_market_context:
|
|
|
|
| 661 |
|
| 662 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 663 |
|
|
|
|
| 664 |
if not final_decision.get('strategy') or final_decision['strategy'] == 'unknown':
|
| 665 |
final_decision['strategy'] = original_strategy
|
| 666 |
print(f"🔧 Final re-analysis strategy fix for {symbol}: {original_strategy}")
|
|
|
|
| 695 |
})
|
| 696 |
return None
|
| 697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
async def run_bot_cycle_async():
|
|
|
|
| 699 |
print(f"\n{'='*70}")
|
| 700 |
print(f"⏳ New cycle initiated at: {datetime.now().isoformat()}")
|
| 701 |
print(f"{'='*70}")
|
|
|
|
| 715 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 716 |
print(f"✅ Found {len(open_trades)} open trade(s).")
|
| 717 |
|
|
|
|
| 718 |
trades_fixed = 0
|
| 719 |
for trade in open_trades:
|
| 720 |
if not trade.get('strategy') or trade['strategy'] == 'unknown':
|
|
|
|
| 761 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 762 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
| 763 |
|
|
|
|
| 764 |
print(f"💰 Current available capital: ${current_capital:.2f}")
|
| 765 |
|
|
|
|
| 766 |
if current_capital <= 0:
|
| 767 |
print("⚠️ Current capital is 0. Checking for potential calculation errors...")
|
| 768 |
|
|
|
|
| 769 |
if len(open_trades) == 0:
|
| 770 |
print("🔄 No open trades but capital is 0. This might be an error.")
|
| 771 |
print("💡 Attempting to recover capital state...")
|
| 772 |
|
|
|
|
| 773 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
| 774 |
if initial_capital > 0:
|
| 775 |
portfolio_state["current_capital_usd"] = initial_capital
|
|
|
|
| 784 |
if new_opportunity:
|
| 785 |
print(f"✅ Opportunity for {new_opportunity['symbol']} confirmed! Saving trade. Strategy: {new_opportunity.get('strategy')}")
|
| 786 |
|
|
|
|
| 787 |
if not new_opportunity['decision'].get('strategy'):
|
| 788 |
new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
|
| 789 |
print(f"🔧 Final pre-save strategy fix: {new_opportunity['decision']['strategy']}")
|
|
|
|
| 836 |
data_manager_global = DataManager(contracts_database)
|
| 837 |
await data_manager_global.initialize()
|
| 838 |
|
|
|
|
| 839 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 840 |
+
await learning_engine_global.initialize_enhanced()
|
| 841 |
|
|
|
|
| 842 |
await learning_engine_global.force_strategy_learning()
|
| 843 |
|
|
|
|
| 844 |
if learning_engine_global.initialized:
|
| 845 |
weights = await learning_engine_global.get_optimized_strategy_weights("bull_market")
|
| 846 |
print(f"🎯 الأوزان المحملة: {weights}")
|
|
|
|
| 875 |
|
| 876 |
@application.get("/run-cycle")
|
| 877 |
async def run_cycle_api():
|
|
|
|
| 878 |
asyncio.create_task(run_bot_cycle_async())
|
| 879 |
return {"message": "Bot cycle initiated in the background."}
|
| 880 |
|
| 881 |
@application.get("/health")
|
| 882 |
async def health_check():
|
|
|
|
| 883 |
learning_metrics = {}
|
| 884 |
if learning_engine_global and learning_engine_global.initialized:
|
| 885 |
learning_metrics = await learning_engine_global.calculate_performance_metrics()
|
| 886 |
|
|
|
|
| 887 |
api_stats = {}
|
| 888 |
if data_manager_global:
|
| 889 |
api_stats = data_manager_global.get_performance_stats()
|
|
|
|
| 900 |
},
|
| 901 |
"market_state_ok": state.MARKET_STATE_OK,
|
| 902 |
"learning_engine": learning_metrics,
|
| 903 |
+
"api_usage_stats": api_stats.get('api_usage', {})
|
| 904 |
}
|
| 905 |
|
| 906 |
@application.get("/stats")
|
| 907 |
async def get_performance_stats():
|
|
|
|
| 908 |
try:
|
| 909 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
| 910 |
|
|
|
|
| 914 |
learning_stats = await learning_engine_global.calculate_performance_metrics()
|
| 915 |
improvement_suggestions = await learning_engine_global.suggest_improvements()
|
| 916 |
|
|
|
|
| 917 |
api_stats = {}
|
| 918 |
if data_manager_global:
|
| 919 |
api_stats = data_manager_global.get_performance_stats()
|
| 920 |
|
| 921 |
stats = {
|
| 922 |
"timestamp": datetime.now().isoformat(),
|
| 923 |
+
"data_manager": api_stats,
|
| 924 |
"market_state": {
|
| 925 |
"is_healthy": state.MARKET_STATE_OK,
|
| 926 |
"description": "Market is healthy for trading" if state.MARKET_STATE_OK else "Market conditions are unfavorable",
|
|
|
|
| 932 |
},
|
| 933 |
"learning_engine": learning_stats,
|
| 934 |
"improvement_suggestions": improvement_suggestions,
|
| 935 |
+
"enhanced_features": {
|
| 936 |
"netflow_analysis": True,
|
| 937 |
"enhanced_whale_tracking": True,
|
| 938 |
"dynamic_strategy_selection": True
|
|
|
|
| 944 |
|
| 945 |
@application.get("/logs/status")
|
| 946 |
async def get_logs_status():
|
|
|
|
| 947 |
try:
|
| 948 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 949 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
|
|
|
| 954 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 955 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 956 |
"timestamp": datetime.now().isoformat(),
|
| 957 |
+
"enhanced_analysis": True
|
| 958 |
}
|
| 959 |
except Exception as error:
|
| 960 |
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
| 961 |
|
| 962 |
async def cleanup_on_shutdown():
|
|
|
|
| 963 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 964 |
print("\n🛑 Shutdown signal received. Cleaning up...")
|
| 965 |
|
|
|
|
| 991 |
print("✅ Cleanup completed.")
|
| 992 |
|
| 993 |
def signal_handler(signum, frame):
|
|
|
|
| 994 |
print(f"\n⚠️ Received signal {signum}")
|
| 995 |
asyncio.create_task(cleanup_on_shutdown())
|
| 996 |
sys.exit(0)
|