Spaces:
Running
Running
Update learning_hub/hub_manager.py
Browse files- learning_hub/hub_manager.py +184 -5
learning_hub/hub_manager.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
# learning_hub/hub_manager.py
|
| 2 |
-
# (محدث بالكامل -
|
| 3 |
import asyncio
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# (استيراد جميع المكونات الداخلية للمركز)
|
| 7 |
from .schemas import *
|
|
@@ -11,9 +13,19 @@ from .statistical_analyzer import StatisticalAnalyzer
|
|
| 11 |
from .reflector import Reflector
|
| 12 |
from .curator import Curator
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class LearningHubManager:
|
| 15 |
def __init__(self, r2_service: Any, llm_service: Any, data_manager: Any):
|
| 16 |
-
print("🚀 Initializing Learning Hub Manager...")
|
| 17 |
|
| 18 |
# 1. الخدمات الأساسية (يتم تمريرها من app.py)
|
| 19 |
self.r2_service = r2_service
|
|
@@ -40,6 +52,10 @@ class LearningHubManager:
|
|
| 40 |
data_manager=self.data_manager
|
| 41 |
)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
self.initialized = False
|
| 44 |
print("✅ Learning Hub Manager constructed. Ready for initialization.")
|
| 45 |
|
|
@@ -52,6 +68,15 @@ class LearningHubManager:
|
|
| 52 |
|
| 53 |
print("🔄 [HubManager] Initializing all sub-modules...")
|
| 54 |
await self.statistical_analyzer.initialize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.initialized = True
|
| 56 |
print("✅ [HubManager] All sub-modules initialized. Learning Hub is LIVE.")
|
| 57 |
|
|
@@ -166,6 +191,160 @@ class LearningHubManager:
|
|
| 166 |
print("✅ [HubManager] All statistical (slow-learner) data saved.")
|
| 167 |
except Exception as e:
|
| 168 |
print(f"❌ [HubManager] Failed to save learning data on shutdown: {e}")
|
| 169 |
-
|
| 170 |
-
# (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
# 🔴 --- END OF CHANGE --- 🔴
|
|
|
|
| 1 |
# learning_hub/hub_manager.py
|
| 2 |
+
# (محدث بالكامل - V3 - Whale Learning Loop)
|
| 3 |
import asyncio
|
| 4 |
+
import traceback
|
| 5 |
+
from typing import Any, Dict, List
|
| 6 |
+
from datetime import datetime, timezone
|
| 7 |
|
| 8 |
# (استيراد جميع المكونات الداخلية للمركز)
|
| 9 |
from .schemas import *
|
|
|
|
| 13 |
from .reflector import Reflector
|
| 14 |
from .curator import Curator
|
| 15 |
|
| 16 |
+
# 🔴 --- (جديد V3) استيراد لتحليل الارتباط --- 🔴
|
| 17 |
+
try:
|
| 18 |
+
import numpy as np
|
| 19 |
+
from scipy.stats import pearsonr
|
| 20 |
+
NUMPY_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
print("❌ [HubManager] مكتبة numpy أو scipy غير مثبتة! لن يعمل تعلم الحيتان.")
|
| 23 |
+
NUMPY_AVAILABLE = False
|
| 24 |
+
|
| 25 |
+
|
| 26 |
class LearningHubManager:
|
| 27 |
def __init__(self, r2_service: Any, llm_service: Any, data_manager: Any):
|
| 28 |
+
print("🚀 Initializing Learning Hub Manager (V3)...")
|
| 29 |
|
| 30 |
# 1. الخدمات الأساسية (يتم تمريرها من app.py)
|
| 31 |
self.r2_service = r2_service
|
|
|
|
| 52 |
data_manager=self.data_manager
|
| 53 |
)
|
| 54 |
|
| 55 |
+
# 🔴 --- (جديد V3) متغيرات حالة لتعلم الحيتان --- 🔴
|
| 56 |
+
self.whale_learning_lock = asyncio.Lock()
|
| 57 |
+
self.optimal_whale_config = {} # (الأوزان المتعلمة)
|
| 58 |
+
|
| 59 |
self.initialized = False
|
| 60 |
print("✅ Learning Hub Manager constructed. Ready for initialization.")
|
| 61 |
|
|
|
|
| 68 |
|
| 69 |
print("🔄 [HubManager] Initializing all sub-modules...")
|
| 70 |
await self.statistical_analyzer.initialize()
|
| 71 |
+
|
| 72 |
+
# 🔴 --- (جديد V3) تحميل إعدادات الحيتان المتعلمة --- 🔴
|
| 73 |
+
if hasattr(self.r2_service, 'load_whale_learning_config_async'):
|
| 74 |
+
self.optimal_whale_config = await self.r2_service.load_whale_learning_config_async()
|
| 75 |
+
if self.optimal_whale_config:
|
| 76 |
+
print(f"✅ [HubManager] تم تحميل إعدادات تعلم الحيتان المثلى: {self.optimal_whale_config}")
|
| 77 |
+
else:
|
| 78 |
+
print("ℹ️ [HubManager] لم يتم العثور على إعدادات تعلم حيتان سابقة.")
|
| 79 |
+
|
| 80 |
self.initialized = True
|
| 81 |
print("✅ [HubManager] All sub-modules initialized. Learning Hub is LIVE.")
|
| 82 |
|
|
|
|
| 191 |
print("✅ [HubManager] All statistical (slow-learner) data saved.")
|
| 192 |
except Exception as e:
|
| 193 |
print(f"❌ [HubManager] Failed to save learning data on shutdown: {e}")
|
| 194 |
+
|
| 195 |
+
# 🔴 --- START OF CHANGE (V3 - Whale Learning Loop) --- 🔴
|
| 196 |
+
|
| 197 |
+
async def run_whale_learning_check(self):
|
| 198 |
+
"""
|
| 199 |
+
(جديد V3 - "المُسجّل" Logger)
|
| 200 |
+
يعمل في الخلفية لإكمال سجلات تعلم الحيتان المعلقة.
|
| 201 |
+
"""
|
| 202 |
+
if not self.initialized:
|
| 203 |
+
await asyncio.sleep(60) # انتظر حتى تتم التهيئة
|
| 204 |
+
|
| 205 |
+
print(f"🧠 [Whale-Logger] بدء تشغيل حلقة تعلم الحيتان (المُسجّل)...")
|
| 206 |
+
|
| 207 |
+
# (الانتظار 10 دقائق عند بدء التشغيل للسماح بجمع بعض البيانات)
|
| 208 |
+
await asyncio.sleep(600)
|
| 209 |
+
|
| 210 |
+
while True:
|
| 211 |
+
try:
|
| 212 |
+
# (1. جلب السجلات المعلقة)
|
| 213 |
+
pending_records = await self.r2_service.get_pending_whale_learning_records_async()
|
| 214 |
+
if not pending_records:
|
| 215 |
+
# (لا توجد سجلات، انتظر 10 دقائق)
|
| 216 |
+
await asyncio.sleep(600)
|
| 217 |
+
continue
|
| 218 |
+
|
| 219 |
+
print(f"🧠 [Whale-Logger] تم العثور على {len(pending_records)} سجل تعلم معلق. بدء المعالجة...")
|
| 220 |
+
now_utc = datetime.now(timezone.utc)
|
| 221 |
+
|
| 222 |
+
for record in pending_records:
|
| 223 |
+
try:
|
| 224 |
+
target_time_utc = datetime.fromisoformat(record['target_time_utc'])
|
| 225 |
+
|
| 226 |
+
# (2. التحقق من الوقت)
|
| 227 |
+
if now_utc >= target_time_utc:
|
| 228 |
+
print(f" -> [Whale-Logger] معالجة سجل {record['symbol']} (ID: {record['record_id']})...")
|
| 229 |
+
# (حان وقت جلب السعر المستقبلي)
|
| 230 |
+
symbol = record['symbol']
|
| 231 |
+
target_price = await self.data_manager.get_latest_price_async(symbol)
|
| 232 |
+
|
| 233 |
+
if target_price and target_price > 0 and record['start_price_usd'] > 0:
|
| 234 |
+
# (3. حساب النتيجة)
|
| 235 |
+
price_change_pct = ((target_price - record['start_price_usd']) / record['start_price_usd']) * 100
|
| 236 |
+
|
| 237 |
+
record['target_price_usd'] = target_price
|
| 238 |
+
record['price_change_percentage'] = price_change_pct
|
| 239 |
+
record['status'] = "COMPLETED"
|
| 240 |
+
|
| 241 |
+
# (4. تحديث السجل في R2)
|
| 242 |
+
await self.r2_service.update_completed_whale_learning_record_async(record)
|
| 243 |
+
else:
|
| 244 |
+
print(f" ⚠️ [Whale-Logger] فشل جلب السعر المستقبلي لـ {symbol}. سيعاد المحاولة لاحقاً.")
|
| 245 |
+
else:
|
| 246 |
+
# (لم يحن الوقت بعد)
|
| 247 |
+
pass
|
| 248 |
+
|
| 249 |
+
except Exception as e_inner:
|
| 250 |
+
print(f"❌ [Whale-Logger] فشل معالجة سجل فردي: {e_inner}")
|
| 251 |
+
|
| 252 |
+
# (تشغيل "المعلّم" بعد كل دورة تسجيل)
|
| 253 |
+
await self.update_optimal_whale_window()
|
| 254 |
+
|
| 255 |
+
# (الانتظار 5 دقائق قبل التحقق مرة أخرى)
|
| 256 |
+
await asyncio.sleep(300)
|
| 257 |
+
|
| 258 |
+
except Exception as e_outer:
|
| 259 |
+
print(f"❌ [Whale-Logger] خطأ فادح في حلقة تعلم الحيتان: {e_outer}")
|
| 260 |
+
traceback.print_exc()
|
| 261 |
+
await asyncio.sleep(600) # (انتظار 10 دقائق عند الفشل الفادح)
|
| 262 |
+
|
| 263 |
+
async def update_optimal_whale_window(self):
|
| 264 |
+
"""
|
| 265 |
+
(جديد V3 - "المعلّم" Teacher)
|
| 266 |
+
يحلل جميع السجلات المكتملة ويجد أفضل "مقياس + نافذة" للارتباط.
|
| 267 |
+
"""
|
| 268 |
+
if not NUMPY_AVAILABLE:
|
| 269 |
+
print("⚠️ [Whale-Teacher] لا يمكن تشغيل تحليل الارتباط (numpy/scipy مفقودة).")
|
| 270 |
+
return
|
| 271 |
+
|
| 272 |
+
async with self.whale_learning_lock:
|
| 273 |
+
print("👨🏫 [Whale-Teacher] بدء تحليل الارتباط الإحصائي...")
|
| 274 |
+
try:
|
| 275 |
+
# (1. جلب جميع السجلات المكتملة)
|
| 276 |
+
all_completed = await self.r2_service.get_all_completed_whale_records_async()
|
| 277 |
+
if len(all_completed) < 20: # (نحتاج 20 عينة على الأقل لبدء التعلم)
|
| 278 |
+
print(f"👨🏫 [Whale-Teacher] نحتاج 20 سجل مكتمل على الأقل (الحالي: {len(all_completed)}). تخطي التحليل.")
|
| 279 |
+
return
|
| 280 |
+
|
| 281 |
+
# (2. استخراج البيانات في مصفوفات Numpy)
|
| 282 |
+
price_changes = []
|
| 283 |
+
metrics_data = defaultdict(lambda: defaultdict(list))
|
| 284 |
+
|
| 285 |
+
# (قائمة بجميع المقاييس التي نريد اختبارها)
|
| 286 |
+
windows = ['30m', '1h', '2h', '4h', '24h']
|
| 287 |
+
metric_keys = ['relative_net_flow_percent', 'transaction_density', 'net_flow_usd']
|
| 288 |
+
|
| 289 |
+
for record in all_completed:
|
| 290 |
+
if record.get('price_change_percentage') is None: continue
|
| 291 |
+
|
| 292 |
+
price_changes.append(record['price_change_percentage'])
|
| 293 |
+
analysis = record.get('window_analysis', {})
|
| 294 |
+
|
| 295 |
+
for w in windows:
|
| 296 |
+
window_data = analysis.get(w, {})
|
| 297 |
+
for k in metric_keys:
|
| 298 |
+
metrics_data[w][k].append(window_data.get(k, 0.0))
|
| 299 |
+
|
| 300 |
+
price_changes_np = np.array(price_changes)
|
| 301 |
+
if len(price_changes_np) < 20:
|
| 302 |
+
print("👨🏫 [Whale-Teacher] لا توجد بيانات كافية (NP) للارتباط.")
|
| 303 |
+
return
|
| 304 |
+
|
| 305 |
+
# (3. حساب الارتباط)
|
| 306 |
+
correlation_results = {}
|
| 307 |
+
for w in windows:
|
| 308 |
+
for k in metric_keys:
|
| 309 |
+
metric_np = np.array(metrics_data[w][k])
|
| 310 |
+
if len(metric_np) != len(price_changes_np): continue
|
| 311 |
+
|
| 312 |
+
# (حساب ارتباط بيرسون)
|
| 313 |
+
corr, p_value = pearsonr(metric_np, price_changes_np)
|
| 314 |
+
|
| 315 |
+
if not np.isnan(corr) and p_value < 0.1: # (نهتم فقط بالارتباطات ذات الدلالة الإحصائية)
|
| 316 |
+
correlation_results[f"{w}_{k}"] = abs(corr) # (نهتم بقوة الارتباط، بغض النظر عن الاتجاه)
|
| 317 |
+
|
| 318 |
+
if not correlation_results:
|
| 319 |
+
print("👨🏫 [Whale-Teacher] لم يتم العثور على ارتباطات إحصائية ذات دلال��.")
|
| 320 |
+
return
|
| 321 |
+
|
| 322 |
+
# (4. العثور على الفائز وحفظه)
|
| 323 |
+
best_metric_key = max(correlation_results, key=correlation_results.get)
|
| 324 |
+
best_correlation = correlation_results[best_metric_key]
|
| 325 |
+
|
| 326 |
+
# (تقسيم المفتاح: '1h_relative_net_flow_percent')
|
| 327 |
+
best_window, best_metric = best_metric_key.split('_', 1)
|
| 328 |
+
|
| 329 |
+
new_config = {
|
| 330 |
+
"best_window": best_window,
|
| 331 |
+
"best_metric": best_metric,
|
| 332 |
+
"correlation_score": best_correlation,
|
| 333 |
+
"total_samples": len(price_changes_np),
|
| 334 |
+
"last_updated_utc": datetime.now(timezone.utc).isoformat()
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
# (حفظ الإعدادات الجديدة ومشاركتها مع النظام)
|
| 338 |
+
self.optimal_whale_config = new_config
|
| 339 |
+
await self.r2_service.save_whale_learning_config_async(new_config)
|
| 340 |
+
|
| 341 |
+
print(f"🏆 [Whale-Teacher] تم العثور على أفضل إشارة جديدة!")
|
| 342 |
+
print(f" -> المقياس: {best_metric}")
|
| 343 |
+
print(f" -> النافذة: {best_window}")
|
| 344 |
+
print(f" -> الارتباط: {best_correlation:.4f} (على {len(price_changes_np)} عينة)")
|
| 345 |
+
|
| 346 |
+
except Exception as e:
|
| 347 |
+
print(f"❌ [Whale-Teacher] فشل تحليل الارتباط: {e}")
|
| 348 |
+
traceback.print_exc()
|
| 349 |
+
|
| 350 |
# 🔴 --- END OF CHANGE --- 🔴
|