Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,13 @@ from contextlib import asynccontextmanager
|
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from datetime import datetime
|
| 5 |
from r2 import R2Service
|
| 6 |
-
from LLM import LLMService
|
| 7 |
from data_manager import DataManager
|
| 8 |
from ML import MLProcessor as FeatureProcessor
|
| 9 |
from learning_engine import LearningEngine
|
| 10 |
from sentiment_news import SentimentAnalyzer
|
| 11 |
import state
|
| 12 |
-
from helpers import safe_float_conversion, _apply_patience_logic
|
| 13 |
|
| 14 |
r2_service_global = None
|
| 15 |
data_manager_global = None
|
|
@@ -25,76 +25,48 @@ class RealTimeTradeMonitor:
|
|
| 25 |
|
| 26 |
async def start_monitoring(self):
|
| 27 |
self.is_running = True
|
| 28 |
-
|
| 29 |
while self.is_running:
|
| 30 |
try:
|
| 31 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 32 |
-
|
| 33 |
for trade in open_trades:
|
| 34 |
symbol = trade['symbol']
|
| 35 |
if symbol not in self.monitoring_tasks:
|
| 36 |
asyncio.create_task(self._monitor_single_trade(trade))
|
| 37 |
self.monitoring_tasks[symbol] = trade
|
| 38 |
-
|
| 39 |
current_symbols = {trade['symbol'] for trade in open_trades}
|
| 40 |
for symbol in list(self.monitoring_tasks.keys()):
|
| 41 |
-
if symbol not in current_symbols:
|
| 42 |
-
del self.monitoring_tasks[symbol]
|
| 43 |
-
|
| 44 |
await asyncio.sleep(10)
|
| 45 |
-
|
| 46 |
except Exception as error:
|
| 47 |
print(f"Real-time monitor error: {error}")
|
| 48 |
await asyncio.sleep(30)
|
| 49 |
|
| 50 |
async def _monitor_single_trade(self, trade):
|
| 51 |
symbol = trade['symbol']
|
| 52 |
-
|
| 53 |
while symbol in self.monitoring_tasks and self.is_running:
|
| 54 |
try:
|
| 55 |
current_price = await data_manager_global.get_latest_price_async(symbol)
|
| 56 |
-
if not current_price:
|
| 57 |
-
await asyncio.sleep(15)
|
| 58 |
-
continue
|
| 59 |
-
|
| 60 |
entry_price = trade['entry_price']
|
| 61 |
stop_loss = trade.get('stop_loss')
|
| 62 |
take_profit = trade.get('take_profit')
|
| 63 |
-
|
| 64 |
-
should_close =
|
| 65 |
-
close_reason = ""
|
| 66 |
-
|
| 67 |
-
if stop_loss and current_price <= stop_loss:
|
| 68 |
-
should_close = True
|
| 69 |
-
close_reason = f"Stop loss hit: {current_price} <= {stop_loss}"
|
| 70 |
-
elif take_profit and current_price >= take_profit:
|
| 71 |
-
should_close = True
|
| 72 |
-
close_reason = f"Take profit hit: {current_price} >= {take_profit}"
|
| 73 |
-
|
| 74 |
if not should_close and current_price > entry_price:
|
| 75 |
dynamic_stop = current_price * 0.98
|
| 76 |
-
if dynamic_stop > (stop_loss or 0):
|
| 77 |
-
trade['stop_loss'] = dynamic_stop
|
| 78 |
-
|
| 79 |
if should_close:
|
| 80 |
if r2_service_global.acquire_lock():
|
| 81 |
try:
|
| 82 |
await r2_service_global.close_trade_async(trade, current_price)
|
| 83 |
-
|
| 84 |
if learning_engine_global and learning_engine_global.initialized:
|
| 85 |
await learning_engine_global.analyze_trade_outcome(trade, 'CLOSED_BY_MONITOR')
|
| 86 |
-
|
| 87 |
asyncio.create_task(run_bot_cycle_async())
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
r2_service_global.release_lock()
|
| 91 |
-
|
| 92 |
-
if symbol in self.monitoring_tasks:
|
| 93 |
-
del self.monitoring_tasks[symbol]
|
| 94 |
break
|
| 95 |
-
|
| 96 |
await asyncio.sleep(15)
|
| 97 |
-
|
| 98 |
except Exception as error:
|
| 99 |
print(f"Real-time monitoring error for {symbol}: {error}")
|
| 100 |
await asyncio.sleep(30)
|
|
@@ -105,51 +77,26 @@ class RealTimeTradeMonitor:
|
|
| 105 |
|
| 106 |
async def monitor_market_async():
|
| 107 |
global data_manager_global, sentiment_analyzer_global
|
| 108 |
-
|
| 109 |
init_attempts = 0
|
| 110 |
-
while data_manager_global is None and init_attempts < 10:
|
| 111 |
-
|
| 112 |
-
init_attempts += 1
|
| 113 |
-
|
| 114 |
-
if data_manager_global is None:
|
| 115 |
-
return
|
| 116 |
-
|
| 117 |
while True:
|
| 118 |
try:
|
| 119 |
market_context = await sentiment_analyzer_global.get_market_sentiment()
|
| 120 |
-
|
| 121 |
-
if not market_context:
|
| 122 |
-
state.MARKET_STATE_OK = True
|
| 123 |
-
await asyncio.sleep(60)
|
| 124 |
-
continue
|
| 125 |
-
|
| 126 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 127 |
is_critical = whale_analysis.get('critical_alert', False)
|
| 128 |
-
|
| 129 |
bitcoin_sentiment = market_context.get('btc_sentiment')
|
| 130 |
fear_greed_index = market_context.get('fear_and_greed_index')
|
| 131 |
-
|
| 132 |
-
should_halt_trading =
|
| 133 |
-
halt_reason = ""
|
| 134 |
-
|
| 135 |
-
if is_critical:
|
| 136 |
-
should_halt_trading = True
|
| 137 |
-
halt_reason = f"CRITICAL whale activity detected"
|
| 138 |
-
elif bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30):
|
| 139 |
-
should_halt_trading = True
|
| 140 |
-
halt_reason = f"Bearish market conditions"
|
| 141 |
-
|
| 142 |
if should_halt_trading:
|
| 143 |
state.MARKET_STATE_OK = False
|
| 144 |
-
await r2_service_global.save_system_logs_async({
|
| 145 |
-
"market_halt": True,
|
| 146 |
-
"reason": halt_reason
|
| 147 |
-
})
|
| 148 |
else:
|
| 149 |
-
if not state.MARKET_STATE_OK:
|
| 150 |
-
print("Market conditions improved. Resuming normal operations.")
|
| 151 |
state.MARKET_STATE_OK = True
|
| 152 |
-
|
| 153 |
await asyncio.sleep(60)
|
| 154 |
except Exception as error:
|
| 155 |
print(f"Error during market monitoring: {error}")
|
|
@@ -159,36 +106,17 @@ async def monitor_market_async():
|
|
| 159 |
async def validate_candidate_data_enhanced(candidate):
|
| 160 |
try:
|
| 161 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
| 162 |
-
|
| 163 |
for field in required_fields:
|
| 164 |
-
if field not in candidate:
|
| 165 |
-
candidate[field] = 0.0 if field.endswith('_score') or field == 'current_price' else 'UNKNOWN'
|
| 166 |
-
|
| 167 |
candidate['current_price'] = safe_float_conversion(candidate.get('current_price'), 0.0)
|
| 168 |
candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.5)
|
| 169 |
candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score'])
|
| 170 |
-
|
| 171 |
-
if '
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
if '
|
| 175 |
-
candidate['sentiment_data'] = {
|
| 176 |
-
'btc_sentiment': 'NEUTRAL',
|
| 177 |
-
'fear_and_greed_index': 50,
|
| 178 |
-
'general_whale_activity': {'sentiment': 'NEUTRAL', 'critical_alert': False}
|
| 179 |
-
}
|
| 180 |
-
|
| 181 |
-
if 'advanced_indicators' not in candidate:
|
| 182 |
-
candidate['advanced_indicators'] = {}
|
| 183 |
-
|
| 184 |
-
if 'strategy_scores' not in candidate:
|
| 185 |
-
candidate['strategy_scores'] = {}
|
| 186 |
-
|
| 187 |
-
if 'target_strategy' not in candidate:
|
| 188 |
-
candidate['target_strategy'] = 'GENERIC'
|
| 189 |
-
|
| 190 |
return True
|
| 191 |
-
|
| 192 |
except Exception as error:
|
| 193 |
print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}")
|
| 194 |
return False
|
|
@@ -197,341 +125,160 @@ async def analyze_market_strategy(market_context):
|
|
| 197 |
try:
|
| 198 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 199 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 200 |
-
|
| 201 |
-
prompt = f"""
|
| 202 |
-
Analyze current market conditions and determine trading strategy.
|
| 203 |
-
|
| 204 |
-
Market Data:
|
| 205 |
-
- BTC Sentiment: {market_context.get('btc_sentiment')}
|
| 206 |
-
- Fear & Greed Index: {market_context.get('fear_and_greed_index')}
|
| 207 |
-
- Whale Analysis: {whale_analysis.get('sentiment')}
|
| 208 |
-
- Critical Alert: {whale_analysis.get('critical_alert')}
|
| 209 |
-
- Net Flow: ${netflow_analysis.get('net_flow', 0):,.0f}
|
| 210 |
-
|
| 211 |
-
Output JSON:
|
| 212 |
-
{{
|
| 213 |
-
"primary_strategy": "STRATEGY_NAME",
|
| 214 |
-
"reasoning": "Brief reasoning",
|
| 215 |
-
"risk_tolerance": 5,
|
| 216 |
-
"optimal_scan_count": 100
|
| 217 |
-
}}
|
| 218 |
-
"""
|
| 219 |
-
|
| 220 |
response = await llm_service_global._call_llm(prompt)
|
| 221 |
-
|
| 222 |
try:
|
| 223 |
from helpers import parse_json_from_response
|
| 224 |
json_str = parse_json_from_response(response)
|
| 225 |
strategy_data = json.loads(json_str)
|
| 226 |
except:
|
| 227 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 228 |
-
if net_flow > 1000000:
|
| 229 |
-
|
| 230 |
-
elif
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
fallback_strategy = "CONSERVATIVE"
|
| 234 |
-
else:
|
| 235 |
-
fallback_strategy = "GENERIC"
|
| 236 |
-
|
| 237 |
-
strategy_data = {
|
| 238 |
-
"primary_strategy": fallback_strategy,
|
| 239 |
-
"reasoning": "Fallback strategy",
|
| 240 |
-
"risk_tolerance": 5,
|
| 241 |
-
"optimal_scan_count": 100,
|
| 242 |
-
}
|
| 243 |
-
|
| 244 |
return strategy_data
|
| 245 |
-
|
| 246 |
except Exception as error:
|
| 247 |
print(f"Failed to analyze market strategy: {error}")
|
| 248 |
-
return {
|
| 249 |
-
"primary_strategy": "GENERIC",
|
| 250 |
-
"reasoning": "Fallback due to analysis error",
|
| 251 |
-
"risk_tolerance": 5,
|
| 252 |
-
"optimal_scan_count": 100,
|
| 253 |
-
}
|
| 254 |
|
| 255 |
async def find_strategy_specific_candidates(strategy, scan_count):
|
| 256 |
try:
|
| 257 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 258 |
-
|
| 259 |
-
if not all_candidates:
|
| 260 |
-
return []
|
| 261 |
-
|
| 262 |
market_context = await data_manager_global.get_market_context_async()
|
| 263 |
-
if not market_context:
|
| 264 |
-
return []
|
| 265 |
-
|
| 266 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 267 |
-
|
| 268 |
processed_candidates = []
|
| 269 |
for candidate in all_candidates[:30]:
|
| 270 |
try:
|
| 271 |
symbol_with_reasons = [{'symbol': candidate['symbol'], 'reasons': candidate.get('reasons', [])}]
|
| 272 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 273 |
-
|
| 274 |
if ohlcv_data and ohlcv_data[0]:
|
| 275 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 276 |
-
if processed:
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
print(f"Failed to process {candidate.get('symbol')}: {e}")
|
| 280 |
-
|
| 281 |
-
if not processed_candidates:
|
| 282 |
-
return []
|
| 283 |
-
|
| 284 |
if strategy != 'GENERIC':
|
| 285 |
strategy_candidates = []
|
| 286 |
for candidate in processed_candidates:
|
| 287 |
base_scores = candidate.get('base_strategy_scores', {})
|
| 288 |
strategy_score = base_scores.get(strategy, 0)
|
| 289 |
-
|
| 290 |
if strategy_score > 0.2:
|
| 291 |
candidate['strategy_match_score'] = strategy_score
|
| 292 |
strategy_candidates.append(candidate)
|
| 293 |
-
|
| 294 |
-
sorted_candidates = sorted(strategy_candidates,
|
| 295 |
-
key=lambda x: x.get('strategy_match_score', 0),
|
| 296 |
-
reverse=True)
|
| 297 |
top_candidates = sorted_candidates[:15]
|
| 298 |
else:
|
| 299 |
-
sorted_candidates = sorted(processed_candidates,
|
| 300 |
-
key=lambda x: x.get('enhanced_final_score', 0),
|
| 301 |
-
reverse=True)
|
| 302 |
top_candidates = sorted_candidates[:15]
|
| 303 |
-
|
| 304 |
return top_candidates
|
| 305 |
-
|
| 306 |
except Exception as error:
|
| 307 |
print(f"Advanced filtering failed: {error}")
|
| 308 |
return []
|
| 309 |
|
| 310 |
async def find_new_opportunities_async():
|
| 311 |
try:
|
| 312 |
-
await r2_service_global.save_system_logs_async({
|
| 313 |
-
"opportunity_scan_started": True
|
| 314 |
-
})
|
| 315 |
-
|
| 316 |
market_context = await data_manager_global.get_market_context_async()
|
| 317 |
-
if not market_context:
|
| 318 |
-
return
|
| 319 |
-
|
| 320 |
strategy_decision = await analyze_market_strategy(market_context)
|
| 321 |
-
|
| 322 |
-
high_potential_candidates = await find_strategy_specific_candidates(
|
| 323 |
-
strategy_decision['primary_strategy'],
|
| 324 |
-
strategy_decision.get('optimal_scan_count', 100)
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
if not high_potential_candidates:
|
| 328 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 329 |
if high_potential_candidates:
|
| 330 |
-
for candidate in high_potential_candidates:
|
| 331 |
-
|
| 332 |
-
else:
|
| 333 |
-
return
|
| 334 |
-
|
| 335 |
all_processed_candidates = []
|
| 336 |
CHUNK_SIZE = 5
|
| 337 |
-
|
| 338 |
for index in range(0, len(high_potential_candidates), CHUNK_SIZE):
|
| 339 |
chunk = high_potential_candidates[index:index+CHUNK_SIZE]
|
| 340 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
| 341 |
-
|
| 342 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 343 |
-
if not updated_market_context:
|
| 344 |
-
updated_market_context = market_context
|
| 345 |
-
|
| 346 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 347 |
-
|
| 348 |
-
processed_chunk = await asyncio.gather(*[
|
| 349 |
-
feature_processor.process_and_score_symbol_enhanced(data) for data in chunk_data
|
| 350 |
-
])
|
| 351 |
all_processed_candidates.extend([c for c in processed_chunk if c is not None])
|
| 352 |
-
|
| 353 |
await asyncio.sleep(1)
|
| 354 |
-
|
| 355 |
-
if not all_processed_candidates:
|
| 356 |
-
return
|
| 357 |
-
|
| 358 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 359 |
-
if not updated_market_context:
|
| 360 |
-
updated_market_context = market_context
|
| 361 |
-
|
| 362 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 363 |
OPPORTUNITY_COUNT = 10
|
| 364 |
top_candidates = feature_processor.filter_top_candidates(all_processed_candidates, OPPORTUNITY_COUNT)
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
candidates_data=top_candidates,
|
| 368 |
-
reanalysis_data={
|
| 369 |
-
"strategy_used": strategy_decision,
|
| 370 |
-
"market_conditions": market_context
|
| 371 |
-
}
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
if not top_candidates:
|
| 375 |
-
return
|
| 376 |
-
|
| 377 |
for candidate in top_candidates:
|
| 378 |
try:
|
| 379 |
-
if not await validate_candidate_data_enhanced(candidate):
|
| 380 |
-
continue
|
| 381 |
-
|
| 382 |
llm_analysis_data = await llm_service_global.get_trading_decision(candidate)
|
| 383 |
-
|
| 384 |
-
if
|
| 385 |
-
continue
|
| 386 |
-
|
| 387 |
-
if llm_analysis_data.get('action') == "HOLD":
|
| 388 |
-
continue
|
| 389 |
-
|
| 390 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
| 391 |
final_strategy = llm_analysis_data.get('strategy')
|
| 392 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
await r2_service_global.save_system_logs_async({
|
| 399 |
-
"new_opportunity_found": True,
|
| 400 |
-
"symbol": candidate['symbol'],
|
| 401 |
-
"action": llm_analysis_data.get('action'),
|
| 402 |
-
"strategy": final_strategy
|
| 403 |
-
})
|
| 404 |
-
|
| 405 |
-
return {
|
| 406 |
-
"symbol": candidate['symbol'],
|
| 407 |
-
"decision": llm_analysis_data,
|
| 408 |
-
"current_price": candidate['current_price'],
|
| 409 |
-
"strategy": final_strategy
|
| 410 |
-
}
|
| 411 |
-
|
| 412 |
-
except Exception as error:
|
| 413 |
-
print(f"LLM error for {candidate.get('symbol', 'unknown')}: {error}")
|
| 414 |
-
|
| 415 |
return None
|
| 416 |
-
|
| 417 |
except Exception as error:
|
| 418 |
print(f"Error while scanning for opportunities: {error}")
|
| 419 |
-
await r2_service_global.save_system_logs_async({
|
| 420 |
-
"opportunity_scan_error": True,
|
| 421 |
-
"error": str(error)
|
| 422 |
-
})
|
| 423 |
return None
|
| 424 |
|
| 425 |
async def re_analyze_open_trade_async(trade_data):
|
| 426 |
symbol = trade_data.get('symbol')
|
| 427 |
-
|
| 428 |
try:
|
| 429 |
entry_time = datetime.fromisoformat(trade_data['entry_timestamp'])
|
| 430 |
current_time = datetime.now()
|
| 431 |
hold_minutes = (current_time - entry_time).total_seconds() / 60
|
| 432 |
-
|
| 433 |
original_strategy = trade_data.get('strategy')
|
| 434 |
-
if not original_strategy or original_strategy == 'unknown':
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
try:
|
| 438 |
-
market_context = await data_manager_global.get_market_context_async()
|
| 439 |
-
except Exception:
|
| 440 |
-
market_context = {'btc_sentiment': 'NEUTRAL'}
|
| 441 |
-
|
| 442 |
symbol_with_reasons = [{'symbol': symbol, 'reasons': ['re-analysis']}]
|
| 443 |
ohlcv_data_list = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 444 |
-
if not ohlcv_data_list:
|
| 445 |
-
return None
|
| 446 |
-
|
| 447 |
raw_data = ohlcv_data_list[0]
|
| 448 |
try:
|
| 449 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 450 |
-
if updated_market_context:
|
| 451 |
-
|
| 452 |
-
except Exception:
|
| 453 |
-
pass
|
| 454 |
-
|
| 455 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 456 |
processed_data = await feature_processor.process_and_score_symbol(raw_data)
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
await r2_service_global.save_candidates_data_async(
|
| 462 |
-
candidates_data=None,
|
| 463 |
-
reanalysis_data={
|
| 464 |
-
'market_context': market_context,
|
| 465 |
-
'processed_data': processed_data
|
| 466 |
-
}
|
| 467 |
-
)
|
| 468 |
-
|
| 469 |
-
try:
|
| 470 |
-
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
|
| 471 |
-
except Exception:
|
| 472 |
-
re_analysis_decision = local_re_analyze_trade(trade_data, processed_data)
|
| 473 |
-
|
| 474 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
await r2_service_global.save_system_logs_async({
|
| 480 |
-
"trade_reanalyzed": True,
|
| 481 |
-
"symbol": symbol,
|
| 482 |
-
"action": final_decision.get('action'),
|
| 483 |
-
"hold_minutes": hold_minutes,
|
| 484 |
-
"strategy": final_decision.get('strategy')
|
| 485 |
-
})
|
| 486 |
-
|
| 487 |
-
return {
|
| 488 |
-
"symbol": symbol,
|
| 489 |
-
"decision": final_decision,
|
| 490 |
-
"current_price": processed_data.get('current_price'),
|
| 491 |
-
"hold_minutes": hold_minutes
|
| 492 |
-
}
|
| 493 |
-
|
| 494 |
except Exception as error:
|
| 495 |
print(f"Error during trade re-analysis: {error}")
|
| 496 |
-
await r2_service_global.save_system_logs_async({
|
| 497 |
-
"reanalysis_error": True,
|
| 498 |
-
"symbol": symbol,
|
| 499 |
-
"error": str(error)
|
| 500 |
-
})
|
| 501 |
return None
|
| 502 |
|
| 503 |
async def run_bot_cycle_async():
|
| 504 |
try:
|
| 505 |
-
await r2_service_global.save_system_logs_async({
|
| 506 |
-
|
| 507 |
-
})
|
| 508 |
-
|
| 509 |
-
if not r2_service_global.acquire_lock():
|
| 510 |
-
return
|
| 511 |
-
|
| 512 |
open_trades = []
|
| 513 |
try:
|
| 514 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 515 |
-
|
| 516 |
trades_fixed = 0
|
| 517 |
for trade in open_trades:
|
| 518 |
if not trade.get('strategy') or trade['strategy'] == 'unknown':
|
| 519 |
original_strategy = trade.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 520 |
trade['strategy'] = original_strategy
|
| 521 |
trades_fixed += 1
|
| 522 |
-
|
| 523 |
-
if trades_fixed > 0:
|
| 524 |
-
await r2_service_global.save_open_trades_async(open_trades)
|
| 525 |
-
|
| 526 |
should_look_for_new_trade = not open_trades
|
| 527 |
-
|
| 528 |
if open_trades:
|
| 529 |
now = datetime.now()
|
| 530 |
-
trades_to_reanalyze = [
|
| 531 |
-
trade for trade in open_trades
|
| 532 |
-
if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat()))
|
| 533 |
-
]
|
| 534 |
-
|
| 535 |
if trades_to_reanalyze:
|
| 536 |
for trade in trades_to_reanalyze:
|
| 537 |
result = await re_analyze_open_trade_async(trade)
|
|
@@ -543,13 +290,10 @@ async def run_bot_cycle_async():
|
|
| 543 |
trade_with_strategy['strategy'] = strategy
|
| 544 |
await learning_engine_global.analyze_trade_outcome(trade_with_strategy, 'CLOSED_BY_REANALYSIS')
|
| 545 |
should_look_for_new_trade = True
|
| 546 |
-
elif result and result['decision'].get('action') == "UPDATE_TRADE":
|
| 547 |
-
await r2_service_global.update_trade_async(trade, result['decision'])
|
| 548 |
-
|
| 549 |
if should_look_for_new_trade:
|
| 550 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 551 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
| 552 |
-
|
| 553 |
if current_capital <= 0:
|
| 554 |
if len(open_trades) == 0:
|
| 555 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
|
@@ -558,80 +302,47 @@ async def run_bot_cycle_async():
|
|
| 558 |
portfolio_state["invested_capital_usd"] = 0.0
|
| 559 |
await r2_service_global.save_portfolio_state_async(portfolio_state)
|
| 560 |
current_capital = initial_capital
|
| 561 |
-
|
| 562 |
if current_capital > 1:
|
| 563 |
new_opportunity = await find_new_opportunities_async()
|
| 564 |
if new_opportunity:
|
| 565 |
-
if not new_opportunity['decision'].get('strategy'):
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
await r2_service_global.save_new_trade_async(
|
| 569 |
-
new_opportunity['symbol'],
|
| 570 |
-
new_opportunity['decision'],
|
| 571 |
-
new_opportunity['current_price']
|
| 572 |
-
)
|
| 573 |
newly_opened_trades = await r2_service_global.get_open_trades_async()
|
| 574 |
for trade in newly_opened_trades:
|
| 575 |
if trade['symbol'] == new_opportunity['symbol']:
|
| 576 |
asyncio.create_task(realtime_monitor._monitor_single_trade(trade))
|
| 577 |
break
|
| 578 |
-
|
| 579 |
finally:
|
| 580 |
r2_service_global.release_lock()
|
| 581 |
-
await r2_service_global.save_system_logs_async({
|
| 582 |
-
"cycle_completed": True,
|
| 583 |
-
"open_trades": len(open_trades)
|
| 584 |
-
})
|
| 585 |
-
|
| 586 |
except Exception as error:
|
| 587 |
print(f"Unhandled error in main cycle: {error}")
|
| 588 |
-
await r2_service_global.save_system_logs_async({
|
| 589 |
-
|
| 590 |
-
"error": str(error)
|
| 591 |
-
})
|
| 592 |
-
if r2_service_global.lock_acquired:
|
| 593 |
-
r2_service_global.release_lock()
|
| 594 |
|
| 595 |
@asynccontextmanager
|
| 596 |
async def lifespan(application: FastAPI):
|
| 597 |
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global, realtime_monitor, sentiment_analyzer_global
|
| 598 |
-
|
| 599 |
try:
|
| 600 |
r2_service_global = R2Service()
|
| 601 |
llm_service_global = LLMService()
|
| 602 |
contracts_database = await r2_service_global.load_contracts_db_async()
|
| 603 |
-
|
| 604 |
data_manager_global = DataManager(contracts_database)
|
| 605 |
await data_manager_global.initialize()
|
| 606 |
-
|
| 607 |
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global)
|
| 608 |
-
|
| 609 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 610 |
await learning_engine_global.initialize_enhanced()
|
| 611 |
-
|
| 612 |
await learning_engine_global.force_strategy_learning()
|
| 613 |
-
|
| 614 |
realtime_monitor = RealTimeTradeMonitor()
|
| 615 |
-
|
| 616 |
asyncio.create_task(monitor_market_async())
|
| 617 |
asyncio.create_task(realtime_monitor.start_monitoring())
|
| 618 |
-
|
| 619 |
-
await r2_service_global.save_system_logs_async({
|
| 620 |
-
"application_started": True
|
| 621 |
-
})
|
| 622 |
-
|
| 623 |
yield
|
| 624 |
-
|
| 625 |
except Exception as error:
|
| 626 |
print(f"Application startup failed: {error}")
|
| 627 |
-
if r2_service_global:
|
| 628 |
-
await r2_service_global.save_system_logs_async({
|
| 629 |
-
"application_startup_failed": True,
|
| 630 |
-
"error": str(error)
|
| 631 |
-
})
|
| 632 |
raise
|
| 633 |
-
finally:
|
| 634 |
-
await cleanup_on_shutdown()
|
| 635 |
|
| 636 |
application = FastAPI(lifespan=lifespan)
|
| 637 |
|
|
@@ -643,99 +354,65 @@ async def run_cycle_api():
|
|
| 643 |
@application.get("/health")
|
| 644 |
async def health_check():
|
| 645 |
learning_metrics = {}
|
| 646 |
-
if learning_engine_global and learning_engine_global.initialized:
|
| 647 |
-
learning_metrics = await learning_engine_global.calculate_performance_metrics()
|
| 648 |
-
|
| 649 |
api_stats = {}
|
| 650 |
-
if data_manager_global:
|
| 651 |
-
api_stats = data_manager_global.get_performance_stats()
|
| 652 |
-
|
| 653 |
return {
|
| 654 |
-
"status": "healthy",
|
| 655 |
-
"timestamp": datetime.now().isoformat(),
|
| 656 |
-
"services": {
|
| 657 |
"r2_service": "initialized" if r2_service_global else "uninitialized",
|
| 658 |
"llm_service": "initialized" if llm_service_global else "uninitialized",
|
| 659 |
"data_manager": "initialized" if data_manager_global else "uninitialized",
|
| 660 |
"learning_engine": "active" if learning_engine_global and learning_engine_global.initialized else "inactive",
|
| 661 |
"realtime_monitor": "running" if realtime_monitor and realtime_monitor.is_running else "stopped"
|
| 662 |
-
},
|
| 663 |
-
"market_state_ok": state.MARKET_STATE_OK,
|
| 664 |
-
"learning_engine": learning_metrics
|
| 665 |
}
|
| 666 |
|
| 667 |
@application.get("/stats")
|
| 668 |
async def get_performance_stats():
|
| 669 |
try:
|
| 670 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
| 671 |
-
|
| 672 |
learning_stats = {}
|
| 673 |
-
if learning_engine_global and learning_engine_global.initialized:
|
| 674 |
-
learning_stats = await learning_engine_global.calculate_performance_metrics()
|
| 675 |
-
|
| 676 |
api_stats = {}
|
| 677 |
-
if data_manager_global:
|
| 678 |
-
api_stats = data_manager_global.get_performance_stats()
|
| 679 |
-
|
| 680 |
stats = {
|
| 681 |
-
"timestamp": datetime.now().isoformat(),
|
| 682 |
-
|
| 683 |
-
"
|
| 684 |
-
"is_healthy": state.MARKET_STATE_OK,
|
| 685 |
-
"context": market_context
|
| 686 |
-
},
|
| 687 |
-
"realtime_monitoring": {
|
| 688 |
"active_trades": len(realtime_monitor.monitoring_tasks) if realtime_monitor else 0,
|
| 689 |
"is_running": realtime_monitor.is_running if realtime_monitor else False
|
| 690 |
-
},
|
| 691 |
-
"learning_engine": learning_stats
|
| 692 |
}
|
| 693 |
return stats
|
| 694 |
-
except Exception as error:
|
| 695 |
-
raise HTTPException(status_code=500, detail=f"Failed to retrieve stats: {str(error)}")
|
| 696 |
|
| 697 |
@application.get("/logs/status")
|
| 698 |
async def get_logs_status():
|
| 699 |
try:
|
| 700 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 701 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 702 |
-
|
| 703 |
return {
|
| 704 |
-
"logging_system": "active",
|
| 705 |
-
"open_trades_count": len(open_trades),
|
| 706 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 707 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 708 |
"timestamp": datetime.now().isoformat()
|
| 709 |
}
|
| 710 |
-
except Exception as error:
|
| 711 |
-
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
| 712 |
|
| 713 |
async def cleanup_on_shutdown():
|
| 714 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 715 |
print("Shutdown signal received. Cleaning up...")
|
| 716 |
-
|
| 717 |
if r2_service_global:
|
| 718 |
-
try:
|
| 719 |
-
|
| 720 |
-
"application_shutdown": True
|
| 721 |
-
})
|
| 722 |
-
except Exception:
|
| 723 |
-
pass
|
| 724 |
-
|
| 725 |
if learning_engine_global and learning_engine_global.initialized:
|
| 726 |
try:
|
| 727 |
await learning_engine_global.save_weights_to_r2()
|
| 728 |
await learning_engine_global.save_performance_history()
|
| 729 |
-
except Exception:
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
if
|
| 733 |
-
realtime_monitor.stop_monitoring()
|
| 734 |
-
|
| 735 |
-
if r2_service_global and r2_service_global.lock_acquired:
|
| 736 |
-
r2_service_global.release_lock()
|
| 737 |
-
if data_manager_global:
|
| 738 |
-
await data_manager_global.close()
|
| 739 |
|
| 740 |
def signal_handler(signum, frame):
|
| 741 |
asyncio.create_task(cleanup_on_shutdown())
|
|
@@ -744,5 +421,4 @@ def signal_handler(signum, frame):
|
|
| 744 |
signal.signal(signal.SIGINT, signal_handler)
|
| 745 |
signal.signal(signal.SIGTERM, signal_handler)
|
| 746 |
|
| 747 |
-
if __name__ == "__main__":
|
| 748 |
-
uvicorn.run(application, host="0.0.0.0", port=7860)
|
|
|
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from datetime import datetime
|
| 5 |
from r2 import R2Service
|
| 6 |
+
from LLM import LLMService
|
| 7 |
from data_manager import DataManager
|
| 8 |
from ML import MLProcessor as FeatureProcessor
|
| 9 |
from learning_engine import LearningEngine
|
| 10 |
from sentiment_news import SentimentAnalyzer
|
| 11 |
import state
|
| 12 |
+
from helpers import safe_float_conversion, _apply_patience_logic, local_analyze_opportunity, local_re_analyze_trade
|
| 13 |
|
| 14 |
r2_service_global = None
|
| 15 |
data_manager_global = None
|
|
|
|
| 25 |
|
| 26 |
async def start_monitoring(self):
|
| 27 |
self.is_running = True
|
|
|
|
| 28 |
while self.is_running:
|
| 29 |
try:
|
| 30 |
open_trades = await r2_service_global.get_open_trades_async()
|
|
|
|
| 31 |
for trade in open_trades:
|
| 32 |
symbol = trade['symbol']
|
| 33 |
if symbol not in self.monitoring_tasks:
|
| 34 |
asyncio.create_task(self._monitor_single_trade(trade))
|
| 35 |
self.monitoring_tasks[symbol] = trade
|
|
|
|
| 36 |
current_symbols = {trade['symbol'] for trade in open_trades}
|
| 37 |
for symbol in list(self.monitoring_tasks.keys()):
|
| 38 |
+
if symbol not in current_symbols: del self.monitoring_tasks[symbol]
|
|
|
|
|
|
|
| 39 |
await asyncio.sleep(10)
|
|
|
|
| 40 |
except Exception as error:
|
| 41 |
print(f"Real-time monitor error: {error}")
|
| 42 |
await asyncio.sleep(30)
|
| 43 |
|
| 44 |
async def _monitor_single_trade(self, trade):
|
| 45 |
symbol = trade['symbol']
|
|
|
|
| 46 |
while symbol in self.monitoring_tasks and self.is_running:
|
| 47 |
try:
|
| 48 |
current_price = await data_manager_global.get_latest_price_async(symbol)
|
| 49 |
+
if not current_price: await asyncio.sleep(15); continue
|
|
|
|
|
|
|
|
|
|
| 50 |
entry_price = trade['entry_price']
|
| 51 |
stop_loss = trade.get('stop_loss')
|
| 52 |
take_profit = trade.get('take_profit')
|
| 53 |
+
should_close, close_reason = False, ""
|
| 54 |
+
if stop_loss and current_price <= stop_loss: should_close, close_reason = True, f"Stop loss hit: {current_price} <= {stop_loss}"
|
| 55 |
+
elif take_profit and current_price >= take_profit: should_close, close_reason = True, f"Take profit hit: {current_price} >= {take_profit}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
if not should_close and current_price > entry_price:
|
| 57 |
dynamic_stop = current_price * 0.98
|
| 58 |
+
if dynamic_stop > (stop_loss or 0): trade['stop_loss'] = dynamic_stop
|
|
|
|
|
|
|
| 59 |
if should_close:
|
| 60 |
if r2_service_global.acquire_lock():
|
| 61 |
try:
|
| 62 |
await r2_service_global.close_trade_async(trade, current_price)
|
|
|
|
| 63 |
if learning_engine_global and learning_engine_global.initialized:
|
| 64 |
await learning_engine_global.analyze_trade_outcome(trade, 'CLOSED_BY_MONITOR')
|
|
|
|
| 65 |
asyncio.create_task(run_bot_cycle_async())
|
| 66 |
+
finally: r2_service_global.release_lock()
|
| 67 |
+
if symbol in self.monitoring_tasks: del self.monitoring_tasks[symbol]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
break
|
|
|
|
| 69 |
await asyncio.sleep(15)
|
|
|
|
| 70 |
except Exception as error:
|
| 71 |
print(f"Real-time monitoring error for {symbol}: {error}")
|
| 72 |
await asyncio.sleep(30)
|
|
|
|
| 77 |
|
| 78 |
async def monitor_market_async():
|
| 79 |
global data_manager_global, sentiment_analyzer_global
|
|
|
|
| 80 |
init_attempts = 0
|
| 81 |
+
while data_manager_global is None and init_attempts < 10: await asyncio.sleep(3); init_attempts += 1
|
| 82 |
+
if data_manager_global is None: return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
while True:
|
| 84 |
try:
|
| 85 |
market_context = await sentiment_analyzer_global.get_market_sentiment()
|
| 86 |
+
if not market_context: state.MARKET_STATE_OK = True; await asyncio.sleep(60); continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 88 |
is_critical = whale_analysis.get('critical_alert', False)
|
|
|
|
| 89 |
bitcoin_sentiment = market_context.get('btc_sentiment')
|
| 90 |
fear_greed_index = market_context.get('fear_and_greed_index')
|
| 91 |
+
should_halt_trading, halt_reason = False, ""
|
| 92 |
+
if is_critical: should_halt_trading, halt_reason = True, f"CRITICAL whale activity detected"
|
| 93 |
+
elif bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30): should_halt_trading, halt_reason = True, f"Bearish market conditions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
if should_halt_trading:
|
| 95 |
state.MARKET_STATE_OK = False
|
| 96 |
+
await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason})
|
|
|
|
|
|
|
|
|
|
| 97 |
else:
|
| 98 |
+
if not state.MARKET_STATE_OK: print("Market conditions improved. Resuming normal operations.")
|
|
|
|
| 99 |
state.MARKET_STATE_OK = True
|
|
|
|
| 100 |
await asyncio.sleep(60)
|
| 101 |
except Exception as error:
|
| 102 |
print(f"Error during market monitoring: {error}")
|
|
|
|
| 106 |
async def validate_candidate_data_enhanced(candidate):
|
| 107 |
try:
|
| 108 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
|
|
|
| 109 |
for field in required_fields:
|
| 110 |
+
if field not in candidate: candidate[field] = 0.0 if field.endswith('_score') or field == 'current_price' else 'UNKNOWN'
|
|
|
|
|
|
|
| 111 |
candidate['current_price'] = safe_float_conversion(candidate.get('current_price'), 0.0)
|
| 112 |
candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.5)
|
| 113 |
candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score'])
|
| 114 |
+
if 'reasons_for_candidacy' not in candidate: candidate['reasons_for_candidacy'] = ['unknown_reason']
|
| 115 |
+
if 'sentiment_data' not in candidate: candidate['sentiment_data'] = {'btc_sentiment': 'NEUTRAL','fear_and_greed_index': 50,'general_whale_activity': {'sentiment': 'NEUTRAL', 'critical_alert': False}}
|
| 116 |
+
if 'advanced_indicators' not in candidate: candidate['advanced_indicators'] = {}
|
| 117 |
+
if 'strategy_scores' not in candidate: candidate['strategy_scores'] = {}
|
| 118 |
+
if 'target_strategy' not in candidate: candidate['target_strategy'] = 'GENERIC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
return True
|
|
|
|
| 120 |
except Exception as error:
|
| 121 |
print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}")
|
| 122 |
return False
|
|
|
|
| 125 |
try:
|
| 126 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 127 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 128 |
+
prompt = f"Analyze current market conditions and determine trading strategy.\n\nMarket Data:\n- BTC Sentiment: {market_context.get('btc_sentiment')}\n- Fear & Greed Index: {market_context.get('fear_and_greed_index')}\n- Whale Analysis: {whale_analysis.get('sentiment')}\n- Critical Alert: {whale_analysis.get('critical_alert')}\n- Net Flow: ${netflow_analysis.get('net_flow', 0):,.0f}\n\nOutput JSON:\n{{\"primary_strategy\": \"STRATEGY_NAME\",\"reasoning\": \"Brief reasoning\",\"risk_tolerance\": 5,\"optimal_scan_count\": 100}}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
response = await llm_service_global._call_llm(prompt)
|
|
|
|
| 130 |
try:
|
| 131 |
from helpers import parse_json_from_response
|
| 132 |
json_str = parse_json_from_response(response)
|
| 133 |
strategy_data = json.loads(json_str)
|
| 134 |
except:
|
| 135 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 136 |
+
if net_flow > 1000000: fallback_strategy = "AGGRESSIVE_GROWTH"
|
| 137 |
+
elif net_flow < -1000000: fallback_strategy = "CONSERVATIVE"
|
| 138 |
+
elif whale_analysis.get('critical_alert'): fallback_strategy = "CONSERVATIVE"
|
| 139 |
+
else: fallback_strategy = "GENERIC"
|
| 140 |
+
strategy_data = {"primary_strategy": fallback_strategy,"reasoning": "Fallback strategy","risk_tolerance": 5,"optimal_scan_count": 100}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
return strategy_data
|
|
|
|
| 142 |
except Exception as error:
|
| 143 |
print(f"Failed to analyze market strategy: {error}")
|
| 144 |
+
return {"primary_strategy": "GENERIC","reasoning": "Fallback due to analysis error","risk_tolerance": 5,"optimal_scan_count": 100}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
async def find_strategy_specific_candidates(strategy, scan_count):
|
| 147 |
try:
|
| 148 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 149 |
+
if not all_candidates: return []
|
|
|
|
|
|
|
|
|
|
| 150 |
market_context = await data_manager_global.get_market_context_async()
|
| 151 |
+
if not market_context: return []
|
|
|
|
|
|
|
| 152 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
|
|
|
| 153 |
processed_candidates = []
|
| 154 |
for candidate in all_candidates[:30]:
|
| 155 |
try:
|
| 156 |
symbol_with_reasons = [{'symbol': candidate['symbol'], 'reasons': candidate.get('reasons', [])}]
|
| 157 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
|
|
|
| 158 |
if ohlcv_data and ohlcv_data[0]:
|
| 159 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 160 |
+
if processed: processed_candidates.append(processed)
|
| 161 |
+
except Exception as e: print(f"Failed to process {candidate.get('symbol')}: {e}")
|
| 162 |
+
if not processed_candidates: return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if strategy != 'GENERIC':
|
| 164 |
strategy_candidates = []
|
| 165 |
for candidate in processed_candidates:
|
| 166 |
base_scores = candidate.get('base_strategy_scores', {})
|
| 167 |
strategy_score = base_scores.get(strategy, 0)
|
|
|
|
| 168 |
if strategy_score > 0.2:
|
| 169 |
candidate['strategy_match_score'] = strategy_score
|
| 170 |
strategy_candidates.append(candidate)
|
| 171 |
+
sorted_candidates = sorted(strategy_candidates, key=lambda x: x.get('strategy_match_score', 0), reverse=True)
|
|
|
|
|
|
|
|
|
|
| 172 |
top_candidates = sorted_candidates[:15]
|
| 173 |
else:
|
| 174 |
+
sorted_candidates = sorted(processed_candidates, key=lambda x: x.get('enhanced_final_score', 0), reverse=True)
|
|
|
|
|
|
|
| 175 |
top_candidates = sorted_candidates[:15]
|
|
|
|
| 176 |
return top_candidates
|
|
|
|
| 177 |
except Exception as error:
|
| 178 |
print(f"Advanced filtering failed: {error}")
|
| 179 |
return []
|
| 180 |
|
| 181 |
async def find_new_opportunities_async():
|
| 182 |
try:
|
| 183 |
+
await r2_service_global.save_system_logs_async({"opportunity_scan_started": True})
|
|
|
|
|
|
|
|
|
|
| 184 |
market_context = await data_manager_global.get_market_context_async()
|
| 185 |
+
if not market_context: return
|
|
|
|
|
|
|
| 186 |
strategy_decision = await analyze_market_strategy(market_context)
|
| 187 |
+
high_potential_candidates = await find_strategy_specific_candidates(strategy_decision['primary_strategy'], strategy_decision.get('optimal_scan_count', 100))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
if not high_potential_candidates:
|
| 189 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 190 |
if high_potential_candidates:
|
| 191 |
+
for candidate in high_potential_candidates: candidate['target_strategy'] = 'GENERIC'
|
| 192 |
+
else: return
|
|
|
|
|
|
|
|
|
|
| 193 |
all_processed_candidates = []
|
| 194 |
CHUNK_SIZE = 5
|
|
|
|
| 195 |
for index in range(0, len(high_potential_candidates), CHUNK_SIZE):
|
| 196 |
chunk = high_potential_candidates[index:index+CHUNK_SIZE]
|
| 197 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
|
|
|
| 198 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 199 |
+
if not updated_market_context: updated_market_context = market_context
|
|
|
|
|
|
|
| 200 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 201 |
+
processed_chunk = await asyncio.gather(*[feature_processor.process_and_score_symbol_enhanced(data) for data in chunk_data])
|
|
|
|
|
|
|
|
|
|
| 202 |
all_processed_candidates.extend([c for c in processed_chunk if c is not None])
|
|
|
|
| 203 |
await asyncio.sleep(1)
|
| 204 |
+
if not all_processed_candidates: return
|
|
|
|
|
|
|
|
|
|
| 205 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 206 |
+
if not updated_market_context: updated_market_context = market_context
|
|
|
|
|
|
|
| 207 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 208 |
OPPORTUNITY_COUNT = 10
|
| 209 |
top_candidates = feature_processor.filter_top_candidates(all_processed_candidates, OPPORTUNITY_COUNT)
|
| 210 |
+
await r2_service_global.save_candidates_data_async(candidates_data=top_candidates, reanalysis_data={"strategy_used": strategy_decision, "market_conditions": market_context})
|
| 211 |
+
if not top_candidates: return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
for candidate in top_candidates:
|
| 213 |
try:
|
| 214 |
+
if not await validate_candidate_data_enhanced(candidate): continue
|
|
|
|
|
|
|
| 215 |
llm_analysis_data = await llm_service_global.get_trading_decision(candidate)
|
| 216 |
+
if not llm_analysis_data: continue
|
| 217 |
+
if llm_analysis_data.get('action') == "HOLD": continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
| 219 |
final_strategy = llm_analysis_data.get('strategy')
|
| 220 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 221 |
+
if not final_strategy or final_strategy == 'unknown': final_strategy = candidate_strategy; llm_analysis_data['strategy'] = final_strategy
|
| 222 |
+
await r2_service_global.save_system_logs_async({"new_opportunity_found": True, "symbol": candidate['symbol'],"action": llm_analysis_data.get('action'), "strategy": final_strategy})
|
| 223 |
+
return {"symbol": candidate['symbol'],"decision": llm_analysis_data,"current_price": candidate['current_price'],"strategy": final_strategy}
|
| 224 |
+
except Exception as error: print(f"LLM error for {candidate.get('symbol', 'unknown')}: {error}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
return None
|
|
|
|
| 226 |
except Exception as error:
|
| 227 |
print(f"Error while scanning for opportunities: {error}")
|
| 228 |
+
await r2_service_global.save_system_logs_async({"opportunity_scan_error": True, "error": str(error)})
|
|
|
|
|
|
|
|
|
|
| 229 |
return None
|
| 230 |
|
| 231 |
async def re_analyze_open_trade_async(trade_data):
|
| 232 |
symbol = trade_data.get('symbol')
|
|
|
|
| 233 |
try:
|
| 234 |
entry_time = datetime.fromisoformat(trade_data['entry_timestamp'])
|
| 235 |
current_time = datetime.now()
|
| 236 |
hold_minutes = (current_time - entry_time).total_seconds() / 60
|
|
|
|
| 237 |
original_strategy = trade_data.get('strategy')
|
| 238 |
+
if not original_strategy or original_strategy == 'unknown': original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 239 |
+
try: market_context = await data_manager_global.get_market_context_async()
|
| 240 |
+
except Exception: market_context = {'btc_sentiment': 'NEUTRAL'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
symbol_with_reasons = [{'symbol': symbol, 'reasons': ['re-analysis']}]
|
| 242 |
ohlcv_data_list = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 243 |
+
if not ohlcv_data_list: return None
|
|
|
|
|
|
|
| 244 |
raw_data = ohlcv_data_list[0]
|
| 245 |
try:
|
| 246 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 247 |
+
if updated_market_context: market_context = updated_market_context
|
| 248 |
+
except Exception: pass
|
|
|
|
|
|
|
|
|
|
| 249 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 250 |
processed_data = await feature_processor.process_and_score_symbol(raw_data)
|
| 251 |
+
if not processed_data: return None
|
| 252 |
+
await r2_service_global.save_candidates_data_async(candidates_data=None, reanalysis_data={'market_context': market_context, 'processed_data': processed_data})
|
| 253 |
+
try: re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
|
| 254 |
+
except Exception: re_analysis_decision = local_re_analyze_trade(trade_data, processed_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 256 |
+
if not final_decision.get('strategy'): final_decision['strategy'] = original_strategy
|
| 257 |
+
await r2_service_global.save_system_logs_async({"trade_reanalyzed": True, "symbol": symbol, "action": final_decision.get('action'),"hold_minutes": hold_minutes, "strategy": final_decision.get('strategy')})
|
| 258 |
+
return {"symbol": symbol, "decision": final_decision,"current_price": processed_data.get('current_price'), "hold_minutes": hold_minutes}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
except Exception as error:
|
| 260 |
print(f"Error during trade re-analysis: {error}")
|
| 261 |
+
await r2_service_global.save_system_logs_async({"reanalysis_error": True, "symbol": symbol, "error": str(error)})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
return None
|
| 263 |
|
| 264 |
async def run_bot_cycle_async():
|
| 265 |
try:
|
| 266 |
+
await r2_service_global.save_system_logs_async({"cycle_started": True})
|
| 267 |
+
if not r2_service_global.acquire_lock(): return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
open_trades = []
|
| 269 |
try:
|
| 270 |
open_trades = await r2_service_global.get_open_trades_async()
|
|
|
|
| 271 |
trades_fixed = 0
|
| 272 |
for trade in open_trades:
|
| 273 |
if not trade.get('strategy') or trade['strategy'] == 'unknown':
|
| 274 |
original_strategy = trade.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 275 |
trade['strategy'] = original_strategy
|
| 276 |
trades_fixed += 1
|
| 277 |
+
if trades_fixed > 0: await r2_service_global.save_open_trades_async(open_trades)
|
|
|
|
|
|
|
|
|
|
| 278 |
should_look_for_new_trade = not open_trades
|
|
|
|
| 279 |
if open_trades:
|
| 280 |
now = datetime.now()
|
| 281 |
+
trades_to_reanalyze = [trade for trade in open_trades if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat()))]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
if trades_to_reanalyze:
|
| 283 |
for trade in trades_to_reanalyze:
|
| 284 |
result = await re_analyze_open_trade_async(trade)
|
|
|
|
| 290 |
trade_with_strategy['strategy'] = strategy
|
| 291 |
await learning_engine_global.analyze_trade_outcome(trade_with_strategy, 'CLOSED_BY_REANALYSIS')
|
| 292 |
should_look_for_new_trade = True
|
| 293 |
+
elif result and result['decision'].get('action') == "UPDATE_TRADE": await r2_service_global.update_trade_async(trade, result['decision'])
|
|
|
|
|
|
|
| 294 |
if should_look_for_new_trade:
|
| 295 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 296 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
|
|
|
| 297 |
if current_capital <= 0:
|
| 298 |
if len(open_trades) == 0:
|
| 299 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
|
|
|
| 302 |
portfolio_state["invested_capital_usd"] = 0.0
|
| 303 |
await r2_service_global.save_portfolio_state_async(portfolio_state)
|
| 304 |
current_capital = initial_capital
|
|
|
|
| 305 |
if current_capital > 1:
|
| 306 |
new_opportunity = await find_new_opportunities_async()
|
| 307 |
if new_opportunity:
|
| 308 |
+
if not new_opportunity['decision'].get('strategy'): new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
|
| 309 |
+
await r2_service_global.save_new_trade_async(new_opportunity['symbol'], new_opportunity['decision'], new_opportunity['current_price'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
newly_opened_trades = await r2_service_global.get_open_trades_async()
|
| 311 |
for trade in newly_opened_trades:
|
| 312 |
if trade['symbol'] == new_opportunity['symbol']:
|
| 313 |
asyncio.create_task(realtime_monitor._monitor_single_trade(trade))
|
| 314 |
break
|
|
|
|
| 315 |
finally:
|
| 316 |
r2_service_global.release_lock()
|
| 317 |
+
await r2_service_global.save_system_logs_async({"cycle_completed": True, "open_trades": len(open_trades)})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
except Exception as error:
|
| 319 |
print(f"Unhandled error in main cycle: {error}")
|
| 320 |
+
await r2_service_global.save_system_logs_async({"cycle_error": True, "error": str(error)})
|
| 321 |
+
if r2_service_global.lock_acquired: r2_service_global.release_lock()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
@asynccontextmanager
|
| 324 |
async def lifespan(application: FastAPI):
|
| 325 |
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global, realtime_monitor, sentiment_analyzer_global
|
|
|
|
| 326 |
try:
|
| 327 |
r2_service_global = R2Service()
|
| 328 |
llm_service_global = LLMService()
|
| 329 |
contracts_database = await r2_service_global.load_contracts_db_async()
|
|
|
|
| 330 |
data_manager_global = DataManager(contracts_database)
|
| 331 |
await data_manager_global.initialize()
|
|
|
|
| 332 |
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global)
|
|
|
|
| 333 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 334 |
await learning_engine_global.initialize_enhanced()
|
|
|
|
| 335 |
await learning_engine_global.force_strategy_learning()
|
|
|
|
| 336 |
realtime_monitor = RealTimeTradeMonitor()
|
|
|
|
| 337 |
asyncio.create_task(monitor_market_async())
|
| 338 |
asyncio.create_task(realtime_monitor.start_monitoring())
|
| 339 |
+
await r2_service_global.save_system_logs_async({"application_started": True})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
yield
|
|
|
|
| 341 |
except Exception as error:
|
| 342 |
print(f"Application startup failed: {error}")
|
| 343 |
+
if r2_service_global: await r2_service_global.save_system_logs_async({"application_startup_failed": True, "error": str(error)})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
raise
|
| 345 |
+
finally: await cleanup_on_shutdown()
|
|
|
|
| 346 |
|
| 347 |
application = FastAPI(lifespan=lifespan)
|
| 348 |
|
|
|
|
| 354 |
@application.get("/health")
|
| 355 |
async def health_check():
|
| 356 |
learning_metrics = {}
|
| 357 |
+
if learning_engine_global and learning_engine_global.initialized: learning_metrics = await learning_engine_global.calculate_performance_metrics()
|
|
|
|
|
|
|
| 358 |
api_stats = {}
|
| 359 |
+
if data_manager_global: api_stats = data_manager_global.get_performance_stats()
|
|
|
|
|
|
|
| 360 |
return {
|
| 361 |
+
"status": "healthy", "timestamp": datetime.now().isoformat(), "services": {
|
|
|
|
|
|
|
| 362 |
"r2_service": "initialized" if r2_service_global else "uninitialized",
|
| 363 |
"llm_service": "initialized" if llm_service_global else "uninitialized",
|
| 364 |
"data_manager": "initialized" if data_manager_global else "uninitialized",
|
| 365 |
"learning_engine": "active" if learning_engine_global and learning_engine_global.initialized else "inactive",
|
| 366 |
"realtime_monitor": "running" if realtime_monitor and realtime_monitor.is_running else "stopped"
|
| 367 |
+
}, "market_state_ok": state.MARKET_STATE_OK, "learning_engine": learning_metrics
|
|
|
|
|
|
|
| 368 |
}
|
| 369 |
|
| 370 |
@application.get("/stats")
|
| 371 |
async def get_performance_stats():
|
| 372 |
try:
|
| 373 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
|
|
|
| 374 |
learning_stats = {}
|
| 375 |
+
if learning_engine_global and learning_engine_global.initialized: learning_stats = await learning_engine_global.calculate_performance_metrics()
|
|
|
|
|
|
|
| 376 |
api_stats = {}
|
| 377 |
+
if data_manager_global: api_stats = data_manager_global.get_performance_stats()
|
|
|
|
|
|
|
| 378 |
stats = {
|
| 379 |
+
"timestamp": datetime.now().isoformat(), "data_manager": api_stats, "market_state": {
|
| 380 |
+
"is_healthy": state.MARKET_STATE_OK, "context": market_context
|
| 381 |
+
}, "realtime_monitoring": {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
"active_trades": len(realtime_monitor.monitoring_tasks) if realtime_monitor else 0,
|
| 383 |
"is_running": realtime_monitor.is_running if realtime_monitor else False
|
| 384 |
+
}, "learning_engine": learning_stats
|
|
|
|
| 385 |
}
|
| 386 |
return stats
|
| 387 |
+
except Exception as error: raise HTTPException(status_code=500, detail=f"Failed to retrieve stats: {str(error)}")
|
|
|
|
| 388 |
|
| 389 |
@application.get("/logs/status")
|
| 390 |
async def get_logs_status():
|
| 391 |
try:
|
| 392 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 393 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
|
|
|
| 394 |
return {
|
| 395 |
+
"logging_system": "active", "open_trades_count": len(open_trades),
|
|
|
|
| 396 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 397 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 398 |
"timestamp": datetime.now().isoformat()
|
| 399 |
}
|
| 400 |
+
except Exception as error: raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
|
|
|
| 401 |
|
| 402 |
async def cleanup_on_shutdown():
|
| 403 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 404 |
print("Shutdown signal received. Cleaning up...")
|
|
|
|
| 405 |
if r2_service_global:
|
| 406 |
+
try: await r2_service_global.save_system_logs_async({"application_shutdown": True})
|
| 407 |
+
except Exception: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
if learning_engine_global and learning_engine_global.initialized:
|
| 409 |
try:
|
| 410 |
await learning_engine_global.save_weights_to_r2()
|
| 411 |
await learning_engine_global.save_performance_history()
|
| 412 |
+
except Exception: pass
|
| 413 |
+
if realtime_monitor: realtime_monitor.stop_monitoring()
|
| 414 |
+
if r2_service_global and r2_service_global.lock_acquired: r2_service_global.release_lock()
|
| 415 |
+
if data_manager_global: await data_manager_global.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
def signal_handler(signum, frame):
|
| 418 |
asyncio.create_task(cleanup_on_shutdown())
|
|
|
|
| 421 |
signal.signal(signal.SIGINT, signal_handler)
|
| 422 |
signal.signal(signal.SIGTERM, signal_handler)
|
| 423 |
|
| 424 |
+
if __name__ == "__main__": uvicorn.run(application, host="0.0.0.0", port=7860)
|
|
|