Spaces:
Running
Running
Create xgboost_pattern_v2.py
Browse files- ml_engine/xgboost_pattern_v2.py +174 -0
ml_engine/xgboost_pattern_v2.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ml_engine/xgboost_pattern_v2.py
|
| 2 |
+
# (Pipeline لتجهيز البيانات لنماذج XGBoost V2)
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import pandas_ta as ta
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
# إعداد التسجيل (Logging) لتتبع الأخطاء الصامتة
|
| 10 |
+
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from hurst import compute_Hc
|
| 15 |
+
HURST_AVAILABLE = True
|
| 16 |
+
except ImportError:
|
| 17 |
+
logger.warning("مكتبة 'hurst' غير موجودة. سيتم استخدام قيمة افتراضية 0.5 لمؤشر Hurst.")
|
| 18 |
+
HURST_AVAILABLE = False
|
| 19 |
+
|
| 20 |
+
# === دوال مساعدة (مطابقة تماماً لما استخدم في التدريب) ===
|
| 21 |
+
|
| 22 |
+
def _zv(x):
|
| 23 |
+
"""حساب Z-Score الآمن (يتجنب القسمة على صفر)"""
|
| 24 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
| 25 |
+
x = np.asarray(x, dtype="float32")
|
| 26 |
+
m = np.nanmean(x)
|
| 27 |
+
s = np.nanstd(x) + 1e-9
|
| 28 |
+
x_norm = (x - m) / s
|
| 29 |
+
return np.nan_to_num(x_norm, nan=0.0).astype("float32")
|
| 30 |
+
|
| 31 |
+
def ema_np_safe(x, n):
|
| 32 |
+
"""حساب المتوسط المتحرك الأسي (EMA) بشكل آمن وسريع باستخدام Numpy"""
|
| 33 |
+
x = np.asarray(x, dtype="float32")
|
| 34 |
+
k = 2.0 / (n + 1.0)
|
| 35 |
+
out = np.empty_like(x)
|
| 36 |
+
out[0] = x[0] if not np.isnan(x[0]) else 0.0
|
| 37 |
+
for i in range(1, len(x)):
|
| 38 |
+
val = x[i] if not np.isnan(x[i]) else out[i-1]
|
| 39 |
+
out[i] = out[i-1] + k * (val - out[i-1])
|
| 40 |
+
return out
|
| 41 |
+
|
| 42 |
+
def mc_simple_fast(closes_np: np.ndarray, target_profit=0.005):
|
| 43 |
+
"""نسخة سريعة وآمنة من محاكاة مونت كارلو البسيطة (للميزات الإحصائية)"""
|
| 44 |
+
try:
|
| 45 |
+
if len(closes_np) < 30: return 0.5, 0.0
|
| 46 |
+
c = closes_np
|
| 47 |
+
cur = float(c[-1])
|
| 48 |
+
if cur <= 0: return 0.5, 0.0
|
| 49 |
+
|
| 50 |
+
# حساب العوائد اللوغاريتمية
|
| 51 |
+
lr = np.diff(np.log1p(c))
|
| 52 |
+
lr = lr[np.isfinite(lr)]
|
| 53 |
+
if len(lr) < 20: return 0.5, 0.0
|
| 54 |
+
|
| 55 |
+
mu = np.mean(lr)
|
| 56 |
+
sigma = np.std(lr)
|
| 57 |
+
if sigma < 1e-9: return 0.5, 0.0 # تجنب التقلب الصفري
|
| 58 |
+
|
| 59 |
+
# محاكاة سريعة (500 مسار) باستخدام توزيع t-student (كما في التدريب)
|
| 60 |
+
n_sims = 500
|
| 61 |
+
drift = (mu - 0.5 * sigma**2)
|
| 62 |
+
diffusion = sigma * np.random.standard_t(df=10, size=n_sims)
|
| 63 |
+
sim_prices = cur * np.exp(drift + diffusion)
|
| 64 |
+
|
| 65 |
+
var95 = np.percentile(sim_prices, 5)
|
| 66 |
+
var95_pct = (cur - var95) / (cur + 1e-9)
|
| 67 |
+
prob_gain = np.mean(sim_prices >= cur * (1 + target_profit))
|
| 68 |
+
|
| 69 |
+
return float(prob_gain), float(var95_pct)
|
| 70 |
+
except Exception:
|
| 71 |
+
return 0.5, 0.0
|
| 72 |
+
|
| 73 |
+
# ============================================================
|
| 74 |
+
# === الدالة الرئيسية: تجهيز البيانات للنظام الحي (V6 Pipeline) ===
|
| 75 |
+
# ============================================================
|
| 76 |
+
def transform_candles_for_ml(df_window: pd.DataFrame):
|
| 77 |
+
"""
|
| 78 |
+
تحويل نافذة من الشموع (200 شمعة) إلى متجه ميزات جاهز لنموذج ML.
|
| 79 |
+
Input: DataFrame (must have columns: 'open', 'high', 'low', 'close', 'volume')
|
| 80 |
+
Output: Numpy Array shape (1, 3803) or None if failed.
|
| 81 |
+
"""
|
| 82 |
+
try:
|
| 83 |
+
# التأكد من وجود بيانات كافية (نحتاج 200 شمعة بالضبط للحفاظ على الشكل)
|
| 84 |
+
if len(df_window) < 200:
|
| 85 |
+
# في حالة البيانات الناقصة، يمكننا إما الرفض أو التعبئة بأصفار (الرفض أسلم)
|
| 86 |
+
# logger.warning(f"بيانات غير كافية للتحويل: {len(df_window)} < 200")
|
| 87 |
+
return None
|
| 88 |
+
|
| 89 |
+
df = df_window.iloc[-200:].copy() # نضمن أخذ آخر 200 فقط
|
| 90 |
+
|
| 91 |
+
# تحويل الأعمدة إلى numpy arrays (float32)
|
| 92 |
+
o = df["open"].to_numpy(dtype="float32")
|
| 93 |
+
h = df["high"].to_numpy(dtype="float32")
|
| 94 |
+
l = df["low"].to_numpy(dtype="float32")
|
| 95 |
+
c = df["close"].to_numpy(dtype="float32")
|
| 96 |
+
v = df["volume"].to_numpy(dtype="float32")
|
| 97 |
+
|
| 98 |
+
# --- 1. الميزات الأساسية (5 ميزات × 200) ---
|
| 99 |
+
base = np.stack([o, h, l, c, v], axis=1) # Shape: (200, 5)
|
| 100 |
+
base_z = _zv(base)
|
| 101 |
+
|
| 102 |
+
# --- 2. ميزات إضافية (2 ميزة × 200) ---
|
| 103 |
+
lr = np.zeros_like(c)
|
| 104 |
+
lr[1:] = np.diff(np.log1p(c)) # Log Returns
|
| 105 |
+
rng = (h - l) / (c + 1e-9) # Range
|
| 106 |
+
extra = np.stack([lr, rng], axis=1) # Shape: (200, 2)
|
| 107 |
+
extra_z = _zv(extra)
|
| 108 |
+
|
| 109 |
+
# --- 3. المؤشرات الفنية (12 ميزة × 200) - "المحرك المُدرّع V7" ---
|
| 110 |
+
ema9 = ema_np_safe(c, 9)
|
| 111 |
+
ema21 = ema_np_safe(c, 21)
|
| 112 |
+
ema50 = ema_np_safe(c, 50)
|
| 113 |
+
ema200 = ema_np_safe(c, 200)
|
| 114 |
+
slope21 = np.concatenate([[0.0], np.diff(ema21)])
|
| 115 |
+
slope50 = np.concatenate([[0.0], np.diff(ema50)])
|
| 116 |
+
|
| 117 |
+
# استخدام try...except لكل مؤشر من مكتبة pandas_ta لضمان المتانة
|
| 118 |
+
try: rsi = ta.rsi(pd.Series(c), length=14).fillna(50).to_numpy(dtype="float32")
|
| 119 |
+
except: rsi = np.full_like(c, 50.0, dtype="float32")
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
macd_data = ta.macd(pd.Series(c), fast=12, slow=26, signal=9)
|
| 123 |
+
macd_line = macd_data.iloc[:, 0].fillna(0).to_numpy(dtype="float32")
|
| 124 |
+
macd_hist = macd_data.iloc[:, 2].fillna(0).to_numpy(dtype="float32")
|
| 125 |
+
except:
|
| 126 |
+
macd_line = np.zeros_like(c, dtype="float32")
|
| 127 |
+
macd_hist = np.zeros_like(c, dtype="float32")
|
| 128 |
+
|
| 129 |
+
try: atr = ta.atr(pd.Series(h), pd.Series(l), pd.Series(c), length=14).fillna(0).to_numpy(dtype="float32")
|
| 130 |
+
except: atr = np.zeros_like(c, dtype="float32")
|
| 131 |
+
|
| 132 |
+
try:
|
| 133 |
+
bb = ta.bbands(pd.Series(c), length=20, std=2)
|
| 134 |
+
# BB%B: موقع السعر بالنسبة للنطاق
|
| 135 |
+
bb_p = ((c - bb.iloc[:, 0]) / (bb.iloc[:, 2] - bb.iloc[:, 0] + 1e-9)).fillna(0.5).to_numpy(dtype="float32")
|
| 136 |
+
except: bb_p = np.full_like(c, 0.5, dtype="float32")
|
| 137 |
+
|
| 138 |
+
try: obv = ta.obv(pd.Series(c), pd.Series(v)).fillna(0).to_numpy(dtype="float32")
|
| 139 |
+
except: obv = np.zeros_like(c, dtype="float32")
|
| 140 |
+
|
| 141 |
+
# تجميع المؤشرات الـ 12 وتطبيق Z-Score عليها
|
| 142 |
+
indicators = np.stack([
|
| 143 |
+
ema9, ema21, ema50, ema200, slope21, slope50,
|
| 144 |
+
rsi, macd_line, macd_hist, atr / (c + 1e-9), bb_p, obv
|
| 145 |
+
], axis=1) # Shape: (200, 12)
|
| 146 |
+
indicators_z = _zv(indicators)
|
| 147 |
+
|
| 148 |
+
# --- 4. الدمج والتسطيح (Flattening) ---
|
| 149 |
+
# الشكل النهائي قبل التسطيح: (200, 5 + 2 + 12) = (200, 19)
|
| 150 |
+
X_seq = np.concatenate([base_z, extra_z, indicators_z], axis=1)
|
| 151 |
+
X_seq_flat = X_seq.reshape(1, -1) # Shape: (1, 3800)
|
| 152 |
+
|
| 153 |
+
# --- 5. الميزات الثابتة (3 ميزات) ---
|
| 154 |
+
try: mc_p, mc_var = mc_simple_fast(c[-100:]) # آخر 100 شمعة للمحاكاة السريعة
|
| 155 |
+
except: mc_p, mc_var = 0.5, 0.0
|
| 156 |
+
|
| 157 |
+
hurst_val = 0.5
|
| 158 |
+
if HURST_AVAILABLE:
|
| 159 |
+
try: hurst_val = compute_Hc(c[-100:], kind='price', simplified=True)[0]
|
| 160 |
+
except: pass
|
| 161 |
+
|
| 162 |
+
X_stat = np.array([[mc_p, mc_var, hurst_val]], dtype="float32") # Shape: (1, 3)
|
| 163 |
+
|
| 164 |
+
# --- 6. الدمج النهائي ---
|
| 165 |
+
X_final = np.concatenate([X_seq_flat, X_stat], axis=1) # Shape: (1, 3803)
|
| 166 |
+
|
| 167 |
+
# استبدال أي NaN متبقي بـ 0 للأمان التام
|
| 168 |
+
X_final = np.nan_to_num(X_final, nan=0.0, posinf=0.0, neginf=0.0)
|
| 169 |
+
|
| 170 |
+
return X_final
|
| 171 |
+
|
| 172 |
+
except Exception as e:
|
| 173 |
+
# logger.error(f"Pipeline Error during transformation: {e}")
|
| 174 |
+
return None
|