Update learning_hub/hub_manager.py
Browse files- learning_hub/hub_manager.py +122 -371
learning_hub/hub_manager.py
CHANGED
|
@@ -1,400 +1,151 @@
|
|
| 1 |
-
# learning_hub/
|
| 2 |
-
# (هذا الملف هو النسخة المطورة من learning_engine (39).py القديم)
|
| 3 |
-
# وهو يمثل "التعلم البطيء" (الإحصائي)
|
| 4 |
-
|
| 5 |
-
import json
|
| 6 |
import asyncio
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def should_update_weights(history_length):
|
| 21 |
-
return history_length % 5 == 0 # (تحديث الأوزان كل 5 صفقات)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class StatisticalAnalyzer:
|
| 25 |
-
def __init__(self, r2_service: Any, data_manager: Any):
|
| 26 |
-
self.r2_service = r2_service
|
| 27 |
-
self.data_manager = data_manager # (لجلب سياق السوق)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
self.
|
| 31 |
-
self.
|
| 32 |
-
self.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
self.initialized = False
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
print("✅ Learning Hub Module: Statistical Analyzer (Slow-Learner) loaded")
|
| 41 |
|
| 42 |
async def initialize(self):
|
| 43 |
-
"""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if not self.weights or not self.strategy_effectiveness:
|
| 54 |
-
await self.initialize_default_weights()
|
| 55 |
-
|
| 56 |
-
self.initialized = True
|
| 57 |
-
print("✅ [StatsAnalyzer] نظام التعلم الإحصائي جاهز.")
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"❌ [StatsAnalyzer] فشل التهيئة: {e}")
|
| 60 |
-
await self.initialize_default_weights()
|
| 61 |
-
self.initialized = True
|
| 62 |
-
|
| 63 |
-
# ---------------------------------------------------------------------------
|
| 64 |
-
# (الدوال التالية مأخوذة مباشرة من learning_engine (39).py القديم)
|
| 65 |
-
# (مع تعديلات طفيفة)
|
| 66 |
-
# ---------------------------------------------------------------------------
|
| 67 |
-
|
| 68 |
-
async def initialize_default_weights(self):
|
| 69 |
-
"""إعادة تعيين الأوزان إلى الوضع الافتراضي"""
|
| 70 |
-
# 🔴 --- START OF CHANGE --- 🔴
|
| 71 |
-
self.weights = {
|
| 72 |
-
# 1. أوزان اختيار الاستراتيجية (MLProcessor)
|
| 73 |
-
"strategy_weights": {
|
| 74 |
-
"trend_following": 0.18, "mean_reversion": 0.15, "breakout_momentum": 0.22,
|
| 75 |
-
"volume_spike": 0.12, "whale_tracking": 0.15, "pattern_recognition": 0.10,
|
| 76 |
-
"hybrid_ai": 0.08
|
| 77 |
-
},
|
| 78 |
-
# 2. أوزان المؤشرات العامة (MLProcessor)
|
| 79 |
-
"indicator_weights": {
|
| 80 |
-
"rsi": 0.2, "macd": 0.2, "bbands": 0.15, "atr": 0.1,
|
| 81 |
-
"volume_ratio": 0.2, "vwap": 0.15
|
| 82 |
-
},
|
| 83 |
-
# 3. أوزان الأنماط العامة (MLProcessor)
|
| 84 |
-
"pattern_weights": {
|
| 85 |
-
"Double Bottom": 0.3, "Breakout Up": 0.3, "Uptrend": 0.2,
|
| 86 |
-
"Near Support": 0.2, "Double Top": -0.3 # (وزن سلبي)
|
| 87 |
-
},
|
| 88 |
-
# 4. أوزان كاشف الانعكاس 5m (للحارس)
|
| 89 |
-
"reversal_indicator_weights": {
|
| 90 |
-
"pattern": 0.4,
|
| 91 |
-
"rsi": 0.3,
|
| 92 |
-
"macd": 0.3
|
| 93 |
-
},
|
| 94 |
-
# 5. أوزان زناد الدخول 1m (للحارس)
|
| 95 |
-
"entry_trigger_weights": {
|
| 96 |
-
"cvd": 0.25,
|
| 97 |
-
"order_book": 0.25,
|
| 98 |
-
"ema_1m": 0.25,
|
| 99 |
-
"macd_1m": 0.25
|
| 100 |
-
},
|
| 101 |
-
# 6. عتبة تفعيل زناد الدخول
|
| 102 |
-
"entry_trigger_threshold": 0.75
|
| 103 |
-
}
|
| 104 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 105 |
-
|
| 106 |
-
self.strategy_effectiveness = {}
|
| 107 |
-
self.exit_profile_effectiveness = {}
|
| 108 |
-
self.market_patterns = {}
|
| 109 |
-
|
| 110 |
-
async def load_weights_from_r2(self):
|
| 111 |
-
key = "learning_statistical_weights.json" # (ملف جديد)
|
| 112 |
-
try:
|
| 113 |
-
response = self.r2_service.s3_client.get_object(Bucket="trading", Key=key)
|
| 114 |
-
data = json.loads(response['Body'].read())
|
| 115 |
-
self.weights = data.get("weights", {})
|
| 116 |
-
# (إضافة: التحقق من وجود الأوزان الجديدة، وإلا إضافتها من الافتراضيات)
|
| 117 |
-
if "reversal_indicator_weights" not in self.weights:
|
| 118 |
-
defaults = await self.get_default_strategy_weights() # (سيحتوي على كل شيء)
|
| 119 |
-
self.weights["reversal_indicator_weights"] = defaults.get("reversal_indicator_weights")
|
| 120 |
-
self.weights["entry_trigger_weights"] = defaults.get("entry_trigger_weights")
|
| 121 |
-
self.weights["entry_trigger_threshold"] = defaults.get("entry_trigger_threshold")
|
| 122 |
-
print("ℹ️ [StatsAnalyzer] تم تحديث ملف الأوزان ببيانات الحارس الجديدة.")
|
| 123 |
-
|
| 124 |
-
self.strategy_effectiveness = data.get("strategy_effectiveness", {})
|
| 125 |
-
self.market_patterns = data.get("market_patterns", {})
|
| 126 |
-
print(f"✅ [StatsAnalyzer] تم تحميل الأوزان والإحصائيات من R2.")
|
| 127 |
-
except Exception as e:
|
| 128 |
-
print(f"ℹ️ [StatsAnalyzer] فشل تحميل الأوزان ({e}). استخدام الافتراضيات.")
|
| 129 |
-
await self.initialize_default_weights()
|
| 130 |
-
|
| 131 |
-
async def save_weights_to_r2(self):
|
| 132 |
-
key = "learning_statistical_weights.json"
|
| 133 |
-
try:
|
| 134 |
-
data = {
|
| 135 |
-
"weights": self.weights,
|
| 136 |
-
"strategy_effectiveness": self.strategy_effectiveness,
|
| 137 |
-
"market_patterns": self.market_patterns,
|
| 138 |
-
"last_updated": datetime.now().isoformat()
|
| 139 |
-
}
|
| 140 |
-
data_json = json.dumps(data, indent=2, ensure_ascii=False).encode('utf-8')
|
| 141 |
-
self.r2_service.s3_client.put_object(
|
| 142 |
-
Bucket="trading", Key=key, Body=data_json, ContentType="application/json"
|
| 143 |
-
)
|
| 144 |
-
except Exception as e:
|
| 145 |
-
print(f"❌ [StatsAnalyzer] فشل حفظ الأوزان في R2: {e}")
|
| 146 |
|
| 147 |
-
async def
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
-
|
| 157 |
-
key = "learning_performance_history.json"
|
| 158 |
-
try:
|
| 159 |
-
data = {"history": self.performance_history[-1000:]} # (آخر 1000 صفقة فقط)
|
| 160 |
-
data_json = json.dumps(data, indent=2, ensure_ascii=False).encode('utf-8')
|
| 161 |
-
self.r2_service.s3_client.put_object(
|
| 162 |
-
Bucket="trading", Key=key, Body=data_json, ContentType="application/json"
|
| 163 |
-
)
|
| 164 |
-
except Exception as e:
|
| 165 |
-
print(f"❌ [StatsAnalyzer] فشل حفظ تاريخ الأداء: {e}")
|
| 166 |
|
| 167 |
-
async def load_exit_profile_effectiveness(self):
|
| 168 |
-
key = "learning_exit_profile_effectiveness.json" # (مشترك)
|
| 169 |
try:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
self.exit_profile_effectiveness = data.get("effectiveness", {})
|
| 173 |
except Exception as e:
|
| 174 |
-
|
| 175 |
|
| 176 |
-
async def save_exit_profile_effectiveness(self):
|
| 177 |
-
key = "learning_exit_profile_effectiveness.json"
|
| 178 |
try:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
"last_updated": datetime.now().isoformat()
|
| 182 |
-
}
|
| 183 |
-
data_json = json.dumps(data, indent=2, ensure_ascii=False).encode('utf-8')
|
| 184 |
-
self.r2_service.s3_client.put_object(
|
| 185 |
-
Bucket="trading", Key=key, Body=data_json, ContentType="application/json"
|
| 186 |
-
)
|
| 187 |
except Exception as e:
|
| 188 |
-
print(f"❌ [
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
| 191 |
"""
|
| 192 |
-
|
| 193 |
-
(تدمج update_strategy_effectiveness و update_market_patterns من الملف القديم)
|
| 194 |
"""
|
| 195 |
if not self.initialized:
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
try:
|
| 199 |
-
strategy = trade_object.get('strategy', 'unknown')
|
| 200 |
-
decision_data = trade_object.get('decision_data', {})
|
| 201 |
-
exit_profile = decision_data.get('exit_profile', 'unknown')
|
| 202 |
-
combined_key = f"{strategy}_{exit_profile}"
|
| 203 |
-
|
| 204 |
-
pnl_percent = trade_object.get('pnl_percent', 0)
|
| 205 |
-
is_success = pnl_percent > 0.1 # (اعتبار الربح الطفيف نجاحاً)
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# --- 1. تحديث تاريخ الأداء (للتتبع العام) ---
|
| 216 |
-
analysis_entry = {
|
| 217 |
-
"timestamp": datetime.now().isoformat(),
|
| 218 |
-
"trade_id": trade_object.get('id', 'N/A'),
|
| 219 |
-
"symbol": trade_object.get('symbol', 'N/A'),
|
| 220 |
-
"outcome": close_reason,
|
| 221 |
-
"market_conditions": market_context,
|
| 222 |
-
"strategy_used": strategy,
|
| 223 |
-
"exit_profile_used": exit_profile,
|
| 224 |
-
"pnl_percent": pnl_percent
|
| 225 |
-
}
|
| 226 |
-
self.performance_history.append(analysis_entry)
|
| 227 |
-
|
| 228 |
-
# --- 2. تحديث إحصائيات استراتيجية الدخول (strategy_effectiveness) ---
|
| 229 |
-
if strategy not in self.strategy_effectiveness:
|
| 230 |
-
self.strategy_effectiveness[strategy] = {"total_trades": 0, "successful_trades": 0, "total_pnl_percent": 0}
|
| 231 |
-
|
| 232 |
-
self.strategy_effectiveness[strategy]["total_trades"] += 1
|
| 233 |
-
self.strategy_effectiveness[strategy]["total_pnl_percent"] += pnl_percent
|
| 234 |
-
if is_success:
|
| 235 |
-
self.strategy_effectiveness[strategy]["successful_trades"] += 1
|
| 236 |
-
|
| 237 |
-
# --- 3. تحديث إحصائيات مزيج (الدخول + الخروج) (exit_profile_effectiveness) ---
|
| 238 |
-
if combined_key not in self.exit_profile_effectiveness:
|
| 239 |
-
self.exit_profile_effectiveness[combined_key] = {"total_trades": 0, "successful_trades": 0, "total_pnl_percent": 0, "pnl_list": []}
|
| 240 |
-
|
| 241 |
-
self.exit_profile_effectiveness[combined_key]["total_trades"] += 1
|
| 242 |
-
self.exit_profile_effectiveness[combined_key]["total_pnl_percent"] += pnl_percent
|
| 243 |
-
self.exit_profile_effectiveness[combined_key]["pnl_list"].append(pnl_percent)
|
| 244 |
-
if len(self.exit_profile_effectiveness[combined_key]["pnl_list"]) > 100:
|
| 245 |
-
self.exit_profile_effectiveness[combined_key]["pnl_list"] = self.exit_profile_effectiveness[combined_key]["pnl_list"][-100:]
|
| 246 |
-
if is_success:
|
| 247 |
-
self.exit_profile_effectiveness[combined_key]["successful_trades"] += 1
|
| 248 |
-
|
| 249 |
-
# --- 4. تحديث إحصائيات ظروف السوق (market_patterns) ---
|
| 250 |
-
if market_condition not in self.market_patterns:
|
| 251 |
-
self.market_patterns[market_condition] = {"total_trades": 0, "successful_trades": 0, "total_pnl_percent": 0}
|
| 252 |
-
|
| 253 |
-
self.market_patterns[market_condition]["total_trades"] += 1
|
| 254 |
-
self.market_patterns[market_condition]["total_pnl_percent"] += pnl_percent
|
| 255 |
-
if is_success:
|
| 256 |
-
self.market_patterns[market_condition]["successful_trades"] += 1
|
| 257 |
-
|
| 258 |
-
# --- 5. تكييف الأوزان والحفظ (إذا لزم الأمر) ---
|
| 259 |
-
# (ملاحظة: نحتاج إلى إضافة منطق لتعلم أوزان الحارس هنا مستقبلاً)
|
| 260 |
-
if should_update_weights(len(self.performance_history)):
|
| 261 |
-
await self.adapt_weights_based_on_performance()
|
| 262 |
-
await self.save_weights_to_r2()
|
| 263 |
-
await self.save_performance_history()
|
| 264 |
-
await self.save_exit_profile_effectiveness()
|
| 265 |
-
|
| 266 |
-
print(f"✅ [StatsAnalyzer] تم تحديث الإحصائيات لـ {strategy} / {exit_profile}")
|
| 267 |
-
|
| 268 |
-
except Exception as e:
|
| 269 |
-
print(f"❌ [StatsAnalyzer] فشل تحديث الإحصائيات: {e}")
|
| 270 |
-
traceback.print_exc()
|
| 271 |
-
|
| 272 |
-
async def adapt_weights_based_on_performance(self):
|
| 273 |
-
"""تكييف أوزان استراتيجيات الدخول بناءً على الأداء الإحصائي"""
|
| 274 |
-
# (ملاحظة: هذا المنطق حالياً يكيف فقط strategy_weights)
|
| 275 |
-
# (سنحتاج لتطويره لاحقاً ليكيف أوزان الحارس)
|
| 276 |
-
print("🔄 [StatsAnalyzer] تكييف أوزان الاستراتيجيات (التعلم البطيء)...")
|
| 277 |
-
try:
|
| 278 |
-
strategy_performance = {}
|
| 279 |
-
total_performance = 0
|
| 280 |
-
|
| 281 |
-
for strategy, data in self.strategy_effectiveness.items():
|
| 282 |
-
if data.get("total_trades", 0) > 2: # (يتطلب 3 صفقات على الأقل للتكيف)
|
| 283 |
-
success_rate = data["successful_trades"] / data["total_trades"]
|
| 284 |
-
avg_pnl = data["total_pnl_percent"] / data["total_trades"]
|
| 285 |
-
|
| 286 |
-
# مقياس مركب: (معدل النجاح * 60%) + (متوسط الربح * 40%)
|
| 287 |
-
# (يتم تقييد متوسط الربح بين -5 و +5)
|
| 288 |
-
normalized_pnl = min(max(avg_pnl, -5.0), 5.0) / 5.0 # (من -1 إلى 1)
|
| 289 |
-
|
| 290 |
-
composite_performance = (success_rate * 0.6) + (normalized_pnl * 0.4)
|
| 291 |
-
|
| 292 |
-
strategy_performance[strategy] = composite_performance
|
| 293 |
-
total_performance += composite_performance
|
| 294 |
-
|
| 295 |
-
if total_performance > 0 and strategy_performance:
|
| 296 |
-
base_weights = self.weights.get("strategy_weights", {})
|
| 297 |
-
for strategy, performance in strategy_performance.items():
|
| 298 |
-
current_weight = base_weights.get(strategy, 0.1)
|
| 299 |
-
|
| 300 |
-
# (تعديل طفيف: 80% من الوزن الحالي + 20% من الأداء)
|
| 301 |
-
new_weight = (current_weight * 0.8) + (performance * 0.2)
|
| 302 |
-
base_weights[strategy] = max(new_weight, 0.05) # (الحد الأدنى للوزن 5%)
|
| 303 |
-
|
| 304 |
-
normalize_weights(base_weights)
|
| 305 |
-
self.weights["strategy_weights"] = base_weights
|
| 306 |
-
print(f"✅ [StatsAnalyzer] تم تكييف الأوزان: {base_weights}")
|
| 307 |
-
|
| 308 |
-
except Exception as e:
|
| 309 |
-
print(f"❌ [StatsAnalyzer] فشل تكييف الأوزان: {e}")
|
| 310 |
|
| 311 |
-
|
| 312 |
-
async def get_best_exit_profile(self, entry_strategy: str) -> str:
|
| 313 |
-
"""يجد أفضل ملف خروج إحصائياً لاستراتيجية دخول معينة."""
|
| 314 |
-
if not self.initialized or not self.exit_profile_effectiveness:
|
| 315 |
-
return "unknown"
|
| 316 |
-
|
| 317 |
-
relevant_profiles = {}
|
| 318 |
-
for combined_key, data in self.exit_profile_effectiveness.items():
|
| 319 |
-
if combined_key.startswith(f"{entry_strategy}_"):
|
| 320 |
-
if data.get("total_trades", 0) >= 3: # (يتطلب 3 صفقات)
|
| 321 |
-
exit_profile_name = combined_key.replace(f"{entry_strategy}_", "", 1)
|
| 322 |
-
avg_pnl = data["total_pnl_percent"] / data["total_trades"]
|
| 323 |
-
relevant_profiles[exit_profile_name] = avg_pnl
|
| 324 |
|
| 325 |
-
if
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
| 330 |
|
| 331 |
# 🔴 --- START OF CHANGE --- 🔴
|
| 332 |
async def get_optimized_weights(self, market_condition: str) -> Dict[str, float]:
|
| 333 |
"""
|
| 334 |
-
|
| 335 |
"""
|
| 336 |
-
if not self.initialized
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
# (لكن في الوقت الحالي، سنعيد الأوزان المعدلة إحصائياً كما هي)
|
| 343 |
-
|
| 344 |
-
if not base_weights:
|
| 345 |
-
# (العودة إلى الافتراضيات إذا كانت الأوزان فارغة)
|
| 346 |
-
return await self.get_default_strategy_weights()
|
| 347 |
-
|
| 348 |
-
return base_weights
|
| 349 |
# 🔴 --- END OF CHANGE --- 🔴
|
| 350 |
-
|
| 351 |
-
async def
|
| 352 |
-
"""
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
"volume_spike": 0.12, "whale_tracking": 0.15, "pattern_recognition": 0.10,
|
| 359 |
-
"hybrid_ai": 0.08
|
| 360 |
-
},
|
| 361 |
-
"indicator_weights": {
|
| 362 |
-
"rsi": 0.2, "macd": 0.2, "bbands": 0.15, "atr": 0.1,
|
| 363 |
-
"volume_ratio": 0.2, "vwap": 0.15
|
| 364 |
-
},
|
| 365 |
-
"pattern_weights": {
|
| 366 |
-
"Double Bottom": 0.3, "Breakout Up": 0.3, "Uptrend": 0.2,
|
| 367 |
-
"Near Support": 0.2, "Double Top": -0.3
|
| 368 |
-
},
|
| 369 |
-
"reversal_indicator_weights": {
|
| 370 |
-
"pattern": 0.4, "rsi": 0.3, "macd": 0.3
|
| 371 |
-
},
|
| 372 |
-
"entry_trigger_weights": {
|
| 373 |
-
"cvd": 0.25, "order_book": 0.25, "ema_1m": 0.25, "macd_1m": 0.25
|
| 374 |
-
},
|
| 375 |
-
"entry_trigger_threshold": 0.75
|
| 376 |
-
}
|
| 377 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 378 |
-
|
| 379 |
-
async def get_current_market_conditions(self) -> Dict[str, Any]:
|
| 380 |
-
"""جلب سياق السوق الحالي (من الملف القديم)"""
|
| 381 |
-
try:
|
| 382 |
-
if not self.data_manager:
|
| 383 |
-
raise ValueError("DataManager unavailable")
|
| 384 |
-
market_context = await self.data_manager.get_market_context_async()
|
| 385 |
-
if not market_context:
|
| 386 |
-
raise ValueError("Market context fetch failed")
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
| 396 |
except Exception as e:
|
| 397 |
-
|
| 398 |
-
# 🔴 --- START OF CHANGE --- 🔴
|
| 399 |
-
# (تم حذف القوس } الزائد من هنا)
|
| 400 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
|
|
|
| 1 |
+
# learning_hub/hub_manager.py
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import asyncio
|
| 3 |
+
from typing import Any, Dict
|
| 4 |
+
|
| 5 |
+
# (استيراد جميع المكونات الداخلية للمركز)
|
| 6 |
+
from .schemas import *
|
| 7 |
+
from .policy_engine import PolicyEngine
|
| 8 |
+
from .memory_store import MemoryStore
|
| 9 |
+
from .statistical_analyzer import StatisticalAnalyzer
|
| 10 |
+
from .reflector import Reflector
|
| 11 |
+
from .curator import Curator
|
| 12 |
+
|
| 13 |
+
class LearningHubManager:
|
| 14 |
+
def __init__(self, r2_service: Any, llm_service: Any, data_manager: Any):
|
| 15 |
+
print("🚀 Initializing Learning Hub Manager...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# 1. الخدمات الأساسية (يتم تمريرها من app.py)
|
| 18 |
+
self.r2_service = r2_service
|
| 19 |
+
self.llm_service = llm_service
|
| 20 |
+
self.data_manager = data_manager
|
| 21 |
+
|
| 22 |
+
# 2. تهيئة المكونات (بناء النظام)
|
| 23 |
+
self.policy_engine = PolicyEngine()
|
| 24 |
+
self.memory_store = MemoryStore(
|
| 25 |
+
r2_service=self.r2_service,
|
| 26 |
+
policy_engine=self.policy_engine,
|
| 27 |
+
llm_service=self.llm_service
|
| 28 |
+
)
|
| 29 |
+
self.reflector = Reflector(
|
| 30 |
+
llm_service=self.llm_service,
|
| 31 |
+
memory_store=self.memory_store
|
| 32 |
+
)
|
| 33 |
+
self.curator = Curator(
|
| 34 |
+
llm_service=self.llm_service,
|
| 35 |
+
memory_store=self.memory_store
|
| 36 |
+
)
|
| 37 |
+
self.statistical_analyzer = StatisticalAnalyzer(
|
| 38 |
+
r2_service=self.r2_service,
|
| 39 |
+
data_manager=self.data_manager
|
| 40 |
+
)
|
| 41 |
|
| 42 |
self.initialized = False
|
| 43 |
+
print("✅ Learning Hub Manager constructed. Ready for initialization.")
|
|
|
|
|
|
|
| 44 |
|
| 45 |
async def initialize(self):
|
| 46 |
+
"""
|
| 47 |
+
تهيئة جميع الأنظمة الفرعية، وخاصة تحميل الإحصائيات والأوزان.
|
| 48 |
+
"""
|
| 49 |
+
if self.initialized:
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
print("🔄 [HubManager] Initializing all sub-modules...")
|
| 53 |
+
await self.statistical_analyzer.initialize()
|
| 54 |
+
self.initialized = True
|
| 55 |
+
print("✅ [HubManager] All sub-modules initialized. Learning Hub is LIVE.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
async def analyze_trade_and_learn(self, trade_object: Dict[str, Any], close_reason: str):
|
| 58 |
+
"""
|
| 59 |
+
هذه هي الدالة الرئيسية التي يستدعيها TradeManager.
|
| 60 |
+
إنها تشغل كلاً من نظام التعلم السريع (Reflector) والبطيء (StatsAnalyzer).
|
| 61 |
+
"""
|
| 62 |
+
if not self.initialized:
|
| 63 |
+
print("⚠️ [HubManager] Learning Hub not initialized. Skipping learning.")
|
| 64 |
+
return
|
| 65 |
|
| 66 |
+
print(f"🧠 [HubManager] Learning from trade {trade_object.get('symbol')}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
| 68 |
try:
|
| 69 |
+
# 1. التعلم السريع (Reflector):
|
| 70 |
+
await self.reflector.analyze_trade_outcome(trade_object, close_reason)
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
+
print(f"❌ [HubManager] Reflector (Fast-Learner) failed: {e}")
|
| 73 |
|
|
|
|
|
|
|
| 74 |
try:
|
| 75 |
+
# 2. التعلم البطيء (StatisticalAnalyzer):
|
| 76 |
+
await self.statistical_analyzer.update_statistics(trade_object, close_reason)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
+
print(f"❌ [HubManager] StatisticalAnalyzer (Slow-Learner) failed: {e}")
|
| 79 |
+
|
| 80 |
+
print(f"✅ [HubManager] Learning complete for {trade_object.get('symbol')}.")
|
| 81 |
+
|
| 82 |
+
async def get_active_context_for_llm(self, domain: str, query: str) -> str:
|
| 83 |
"""
|
| 84 |
+
يُستخدم بواسطة LLMService لجلب "الدفتر" (Playbook) / القواعد (Deltas).
|
|
|
|
| 85 |
"""
|
| 86 |
if not self.initialized:
|
| 87 |
+
return "Learning Hub not initialized."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
return await self.memory_store.get_active_context(domain, query)
|
| 90 |
+
|
| 91 |
+
async def get_statistical_feedback_for_llm(self, entry_strategy: str) -> str:
|
| 92 |
+
"""
|
| 93 |
+
يُستخدم بواسطة LLMService لجلب أفضل ملف خروج (إحصائياً).
|
| 94 |
+
"""
|
| 95 |
+
if not self.initialized:
|
| 96 |
+
return "Learning Hub not initialized."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
best_profile = await self.statistical_analyzer.get_best_exit_profile(entry_strategy)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
if best_profile != "unknown":
|
| 101 |
+
# (Prompt in English as requested)
|
| 102 |
+
feedback = f"Statistical Feedback: For the '{entry_strategy}' strategy, the '{best_profile}' exit profile has historically performed best."
|
| 103 |
+
return feedback
|
| 104 |
+
else:
|
| 105 |
+
return "No statistical feedback available for this strategy yet."
|
| 106 |
|
| 107 |
# 🔴 --- START OF CHANGE --- 🔴
|
| 108 |
async def get_optimized_weights(self, market_condition: str) -> Dict[str, float]:
|
| 109 |
"""
|
| 110 |
+
يُستخدم بواسطة MLProcessor/StrategyEngine/Sentry لجلب الأوزان المعدلة إحصائياً.
|
| 111 |
"""
|
| 112 |
+
if not self.initialized:
|
| 113 |
+
# (الحصول على كل الأوزان الافتراضية)
|
| 114 |
+
return await self.statistical_analyzer.get_default_strategy_weights()
|
| 115 |
+
|
| 116 |
+
# (الحصول على كل الأوزان المحسنة)
|
| 117 |
+
return await self.statistical_analyzer.get_optimized_weights(market_condition)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
# 🔴 --- END OF CHANGE --- 🔴
|
| 119 |
+
|
| 120 |
+
async def run_distillation_check(self):
|
| 121 |
+
"""
|
| 122 |
+
(يتم استدعاؤها دورياً من app.py)
|
| 123 |
+
للتحقق من جميع المجالات وتشغيل التقطير إذا لزم الأمر.
|
| 124 |
+
"""
|
| 125 |
+
if not self.initialized:
|
| 126 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
print("ℹ️ [HubManager] Running periodic distillation check...")
|
| 129 |
+
for domain in self.memory_store.domain_files.keys():
|
| 130 |
+
await self.curator.check_and_distill_domain(domain)
|
| 131 |
+
print("✅ [HubManager] Distillation check complete.")
|
| 132 |
+
|
| 133 |
+
# (No change to shutdown function)
|
| 134 |
+
async def shutdown(self):
|
| 135 |
+
"""
|
| 136 |
+
Saves all persistent data from the statistical analyzer.
|
| 137 |
+
"""
|
| 138 |
+
if not self.initialized:
|
| 139 |
+
return
|
| 140 |
|
| 141 |
+
print("🔄 [HubManager] Shutting down... Saving all learning data.")
|
| 142 |
+
try:
|
| 143 |
+
await self.statistical_analyzer.save_weights_to_r2()
|
| 144 |
+
await self.statistical_analyzer.save_performance_history()
|
| 145 |
+
await self.statistical_analyzer.save_exit_profile_effectiveness()
|
| 146 |
+
print("✅ [HubManager] All statistical (slow-learner) data saved.")
|
| 147 |
except Exception as e:
|
| 148 |
+
print(f"❌ [HubManager] Failed to save learning data on shutdown: {e}")
|
| 149 |
+
# 🔴 --- START OF CHANGE --- 🔴
|
| 150 |
+
# (تم حذف القوس } الزائد من هنا)
|
| 151 |
+
# 🔴 --- END OF CHANGE --- 🔴
|