import os, re, json, hashlib from datetime import datetime import pandas as pd import numpy as np def safe_float_conversion(value, default=0.0): try: if value is None: return default if isinstance(value, (int, float)): return float(value) if isinstance(value, str): cleaned = ''.join(c for c in value if c.isdigit() or c in '.-') return float(cleaned) if cleaned else default return default except (ValueError, TypeError): return default def _apply_patience_logic(decision, hold_minutes, trade_data, processed_data): action = decision.get('action') if action == "CLOSE_TRADE" and hold_minutes < 20: current_price = processed_data.get('current_price', 0) entry_price = trade_data.get('entry_price', 0) try: profit_loss_percent = ((current_price - entry_price) / entry_price) * 100 except (TypeError, ZeroDivisionError): profit_loss_percent = 0 if profit_loss_percent < 2: decision.update({ 'action': "HOLD", 'reasoning': f"Patience Filter: Blocked premature sell. Held for {hold_minutes:.1f}m. Giving trade more time." }) return decision def parse_json_from_response(response_text: str): try: json_match = re.search(r'```json\n(.*?)\n```', response_text, re.DOTALL) if json_match: return json_match.group(1).strip() json_match = re.search(r'\{.*\}', response_text, re.DOTALL) if json_match: return json_match.group() return None except Exception: return None def validate_required_fields(data_dict: dict, required_fields: list) -> bool: return all(field in data_dict for field in required_fields) def format_technical_indicators(advanced_indicators): if not advanced_indicators: return "No data for advanced indicators." summary = [] for timeframe, indicators in advanced_indicators.items(): if indicators: parts = [] if 'rsi' in indicators: parts.append(f"RSI: {indicators['rsi']:.2f}") if 'macd_hist' in indicators: parts.append(f"MACD Hist: {indicators['macd_hist']:.4f}") if 'volume_ratio' in indicators: parts.append(f"Volume: {indicators['volume_ratio']:.2f}x") if parts: summary.append(f"{timeframe}: {', '.join(parts)}") return "\n".join(summary) if summary else "Insufficient indicator data." def format_strategy_scores(strategy_scores, recommended_strategy): if not strategy_scores: return "No strategy data available." summary = [f"Recommended Strategy: {recommended_strategy}"] sorted_scores = sorted(strategy_scores.items(), key=lambda item: item[1], reverse=True) for strategy, score in sorted_scores: score_display = f"{score:.3f}" if isinstance(score, (int, float)) else str(score) summary.append(f" • {strategy}: {score_display}") return "\n".join(summary) def format_whale_analysis_for_llm(whale_analysis): """تنسيق تحليل الحيتان للنموذج الضخم بشكل مفيد وواضح""" if not whale_analysis or not whale_analysis.get('data_available', False): return "📊 تحليل الحيتان: لا توجد بيانات عن تحركات الحيتان الحديثة" summary = whale_analysis.get('llm_friendly_summary', {}) if not summary: return "📊 تحليل الحيتان: بيانات الحيتان غير متوفرة" formatted = f"📊 تحليل الحيتان:\n" formatted += f" • النشاط: {summary.get('whale_activity_summary', 'لا توجد معلومات')}\n" formatted += f" • التوصية: {summary.get('recommended_action', 'HOLD')}\n" formatted += f" • مستوى الثقة: {summary.get('confidence', 0.5):.1%}\n" metrics = summary.get('key_metrics', {}) if metrics: flow_direction = metrics.get('net_flow_direction', 'غير معروف') impact_level = metrics.get('whale_movement_impact', 'غير معروف') exchange_involvement = metrics.get('exchange_involvement', 'غير معروف') formatted += f" • اتجاه التدفق: {flow_direction}\n" formatted += f" • مستوى التأثير: {impact_level}\n" formatted += f" • مشاركة المنصات: {exchange_involvement}" # إضافة تحذير إذا كان هناك نشاط حرج if whale_analysis.get('trading_signal', {}).get('critical_alert', False): formatted += "\n ⚠️ تحذير: نشاط حيتان حرج يتطلب الحذر" return formatted def local_analyze_opportunity(candidate_data): score = candidate_data.get('enhanced_final_score', candidate_data.get('final_score', 0)) quality_warnings = candidate_data.get('quality_warnings', []) rsi_critical = any('🚨 RSI CRITICAL' in warning for warning in quality_warnings) rsi_warning = any('⚠️ RSI WARNING' in warning for warning in quality_warnings) if rsi_critical: return { "action": "HOLD", "reasoning": "Local analysis: CRITICAL RSI levels - extreme overbought condition.", "trade_type": "NONE", "stop_loss": None, "take_profit": None, "expected_target_minutes": 15, "confidence_level": 0.1, "model_source": "local_safety_filter", "strategy": "GENERIC" } advanced_indicators = candidate_data.get('advanced_indicators', {}) if not advanced_indicators: return { "action": "HOLD", "reasoning": "Local analysis: Insufficient advanced indicator data.", "trade_type": "NONE", "stop_loss": None, "take_profit": None, "expected_target_minutes": 15, "confidence_level": 0.3, "model_source": "local", "strategy": "GENERIC" } action, reasoning, trade_type = "HOLD", "Local analysis: No strong buy signal based on enhanced rules.", "NONE" stop_loss, take_profit, expected_minutes, confidence = None, None, 15, 0.3 five_minute_indicators = advanced_indicators.get('5m', {}) one_hour_indicators = advanced_indicators.get('1h', {}) buy_conditions = total_conditions = 0 if isinstance(score, (int, float)) and score > 0.70: buy_conditions += 1 total_conditions += 1 rsi_five_minute = five_minute_indicators.get('rsi', 50) if 30 <= rsi_five_minute <= 65: buy_conditions += 1 total_conditions += 1 if five_minute_indicators.get('macd_hist', 0) > 0: buy_conditions += 1 total_conditions += 1 if (five_minute_indicators.get('ema_9', 0) > five_minute_indicators.get('ema_21', 0) and one_hour_indicators.get('ema_9', 0) > one_hour_indicators.get('ema_21', 0)): buy_conditions += 1 total_conditions += 1 if five_minute_indicators.get('volume_ratio', 0) > 1.5: buy_conditions += 1 total_conditions += 1 confidence = buy_conditions / total_conditions if total_conditions > 0 else 0.3 if rsi_warning: confidence *= 0.7 reasoning += " RSI warning applied." if confidence >= 0.6: action = "BUY" current_price = candidate_data['current_price'] trade_type = "LONG" stop_loss = current_price * 0.93 if rsi_warning else current_price * 0.95 take_profit = five_minute_indicators.get('bb_upper', current_price * 1.05) * 1.02 expected_minutes = 10 if confidence >= 0.8 else 18 if confidence >= 0.6 else 25 reasoning = f"Local enhanced analysis: Strong buy signal with {buy_conditions}/{total_conditions} conditions met. Confidence: {confidence:.2f}" if rsi_warning: reasoning += " (RSI warning - trading with caution)" return { "action": action, "reasoning": reasoning, "trade_type": trade_type, "stop_loss": stop_loss, "take_profit": take_profit, "expected_target_minutes": expected_minutes, "confidence_level": confidence, "model_source": "local", "strategy": "GENERIC" } def local_re_analyze_trade(trade_data, processed_data): current_price = processed_data['current_price'] stop_loss = trade_data['stop_loss'] take_profit = trade_data['take_profit'] action = "HOLD" reasoning = "Local re-analysis: No significant change to trigger an update or close." if stop_loss and current_price <= stop_loss: action, reasoning = "CLOSE_TRADE", "Local re-analysis: Stop loss has been hit." elif take_profit and current_price >= take_profit: action, reasoning = "CLOSE_TRADE", "Local re-analysis: Take profit has been hit." strategy = trade_data.get('strategy', 'GENERIC') if strategy == 'unknown': strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC') return { "action": action, "reasoning": reasoning, "new_stop_loss": None, "new_take_profit": None, "new_expected_minutes": None, "model_source": "local", "strategy": strategy } def validate_candidate_data_enhanced(candidate): try: required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score'] for field in required_fields: if field not in candidate: candidate[field] = 0.0 if field.endswith('_score') or field == 'current_price' else 'UNKNOWN' candidate['current_price'] = safe_float_conversion(candidate.get('current_price'), 0.0) candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.5) candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score']) if 'reasons_for_candidacy' not in candidate: candidate['reasons_for_candidacy'] = ['unknown_reason'] if 'sentiment_data' not in candidate: candidate['sentiment_data'] = {'btc_sentiment': 'NEUTRAL','fear_and_greed_index': 50,'general_whale_activity': {'sentiment': 'NEUTRAL', 'critical_alert': False}} if 'advanced_indicators' not in candidate: candidate['advanced_indicators'] = {} if 'strategy_scores' not in candidate: candidate['strategy_scores'] = {} if 'target_strategy' not in candidate: candidate['target_strategy'] = 'GENERIC' return True except Exception as error: print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}") return False def normalize_weights(weights_dict): total = sum(weights_dict.values()) if total > 0: for strategy in weights_dict: weights_dict[strategy] /= total return weights_dict def calculate_market_volatility(market_context): try: btc_price = market_context.get('bitcoin_price_usd', 0) fear_greed = market_context.get('fear_and_greed_index', 50) whale_sentiment = market_context.get('general_whale_activity', {}).get('sentiment', 'NEUTRAL') volatility_score = 0 if btc_price > 0: if abs(fear_greed - 50) > 20: volatility_score += 1 if whale_sentiment in ['BULLISH', 'BEARISH']: volatility_score += 1 elif whale_sentiment == 'SLIGHTLY_BULLISH': volatility_score += 0.5 if volatility_score >= 1.5: return "high" elif volatility_score >= 0.5: return "medium" else: return "low" except Exception as e: print(f"Volatility calculation error: {e}") return "medium" def generate_trade_id(): return str(int(time.time())) def should_update_weights(performance_history_count): if performance_history_count <= 10: return True return performance_history_count % 3 == 0 def format_enhanced_analysis_for_llm(candidate_data, whale_analysis=None, market_context=None): """تنسيق تحليل متقدم شامل للنموذج الضخم""" formatted = "📈 التحليل الشامل للعملة:\n" # المعلومات الأساسية formatted += f"💰 العملة: {candidate_data.get('symbol', 'N/A')}\n" formatted += f"💰 السعر الحالي: ${safe_float_conversion(candidate_data.get('current_price', 0)):.4f}\n" formatted += f"🎯 النتيجة المحسنة: {safe_float_conversion(candidate_data.get('enhanced_final_score', 0)):.3f}\n" # المؤشرات الفنية advanced_indicators = candidate_data.get('advanced_indicators', {}) if advanced_indicators: formatted += "\n🔧 المؤشرات الفنية:\n" for timeframe, indicators in advanced_indicators.items(): if indicators: tech_parts = [] if 'rsi' in indicators: tech_parts.append(f"RSI: {indicators['rsi']:.1f}") if 'macd_hist' in indicators: tech_parts.append(f"MACD: {indicators['macd_hist']:.4f}") if 'volume_ratio' in indicators: tech_parts.append(f"Volume: {indicators['volume_ratio']:.1f}x") if 'ema_9' in indicators and 'ema_21' in indicators: ema_signal = "↑" if indicators['ema_9'] > indicators['ema_21'] else "↓" tech_parts.append(f"EMA: {ema_signal}") if tech_parts: formatted += f" • {timeframe}: {', '.join(tech_parts)}\n" # استراتيجيات التداول strategy_scores = candidate_data.get('strategy_scores', {}) if strategy_scores: formatted += "\n🎯 استراتيجيات التداول:\n" sorted_strategies = sorted(strategy_scores.items(), key=lambda x: x[1], reverse=True)[:3] for strategy, score in sorted_strategies: formatted += f" • {strategy}: {score:.3f}\n" # بيانات الحيتان (إذا كانت متوفرة) if whale_analysis: formatted += f"\n{format_whale_analysis_for_llm(whale_analysis)}\n" # سياق السوق (إذا كان متوفراً) if market_context: formatted += "\n🌍 سياق السوق العام:\n" btc_sentiment = market_context.get('btc_sentiment', 'NEUTRAL') fear_greed = market_context.get('fear_and_greed_index', 50) formatted += f" • اتجاه البيتكوين: {btc_sentiment}\n" formatted += f" • مؤشر الخوف والجشع: {fear_greed}\n" # أسباب الترشيح reasons = candidate_data.get('reasons_for_candidacy', []) if reasons and len(reasons) > 0: formatted += "\n📋 أسباب الترشيح:\n" for i, reason in enumerate(reasons[:5], 1): formatted += f" {i}. {reason}\n" return formatted def create_whale_aware_trading_decision(base_decision, whale_analysis): """إنشاء قرار تداول مدرك لبيانات الحيتان""" if not whale_analysis or not whale_analysis.get('data_available', False): return base_decision whale_signal = whale_analysis.get('trading_signal', {}) whale_action = whale_signal.get('action', 'HOLD') whale_confidence = whale_signal.get('confidence', 0.5) base_action = base_decision.get('action', 'HOLD') base_confidence = base_decision.get('confidence_level', 0.5) # إذا كانت إشارة الحيتان حرجة، نعطيها أولوية عالية if whale_signal.get('critical_alert', False): if whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY': return { **base_decision, 'action': 'HOLD', 'confidence_level': base_confidence * 0.6, 'reasoning': f"{base_decision.get('reasoning', '')} | تم التصحيح بسبب نشاط الحيتان الحرج: {whale_signal.get('reason', '')}" } elif whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'HOLD': return { **base_decision, 'action': 'BUY', 'confidence_level': (base_confidence + whale_confidence) / 2, 'reasoning': f"{base_decision.get('reasoning', '')} | تم التعزيز بسبب نشاط الحيتان الإيجابي: {whale_signal.get('reason', '')}" } # دمج الثقة مع إعطاء وزن 60% لبيانات الحيتان combined_confidence = (base_confidence * 0.4) + (whale_confidence * 0.6) # إذا كانت إشارة الحيتان قوية ومعاكسة، نغير القرار if whale_confidence > 0.8: if (whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY') or \ (whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'SELL'): return { **base_decision, 'action': 'HOLD', 'confidence_level': combined_confidence * 0.8, 'reasoning': f"{base_decision.get('reasoning', '')} | تعارض مع تحركات الحيتان: {whale_signal.get('reason', '')}" } # إذا كانت الإشارات متوافقة، نعزز الثقة if (whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'BUY') or \ (whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'SELL'): enhanced_confidence = min(combined_confidence * 1.2, 0.95) return { **base_decision, 'confidence_level': enhanced_confidence, 'reasoning': f"{base_decision.get('reasoning', '')} | متوافق مع تحركات الحيتان" } # في الحالات الأخرى، نعيد القرار الأساسي مع الثقة المجمعة return { **base_decision, 'confidence_level': combined_confidence, 'reasoning': f"{base_decision.get('reasoning', '')} | أخذ بعين الاعتبار نشاط الحيتان" } def validate_whale_analysis_data(whale_data): """التحقق من صحة بيانات تحليل الحيتان""" if not whale_data: return False, "بيانات الحيتان فارغة" required_fields = ['symbol', 'data_available', 'trading_signal'] for field in required_fields: if field not in whale_data: return False, f"حقل {field} مفقود في بيانات الحيتان" if not whale_data['data_available']: return True, "لا توجد بيانات حيتان متاحة" signal_fields = ['action', 'confidence', 'reason'] trading_signal = whale_data.get('trading_signal', {}) for field in signal_fields: if field not in trading_signal: return False, f"حقل {field} مفقود في إشارة التداول" valid_actions = ['STRONG_BUY', 'BUY', 'HOLD', 'SELL', 'STRONG_SELL'] if trading_signal.get('action') not in valid_actions: return False, f"إجراء تداول غير صالح: {trading_signal.get('action')}" confidence = trading_signal.get('confidence', 0) if not (0 <= confidence <= 1): return False, f"مستوى الثقة خارج النطاق: {confidence}" return True, "بيانات الحيتان صالحة" def calculate_whale_impact_score(whale_analysis): """حساب درجة تأثير الحيتان من 0 إلى 100""" if not whale_analysis or not whale_analysis.get('data_available', False): return 0 trading_signal = whale_analysis.get('trading_signal', {}) action = trading_signal.get('action', 'HOLD') confidence = trading_signal.get('confidence', 0.5) # تعيين أوزان للإجراءات المختلفة action_weights = { 'STRONG_BUY': 100, 'BUY': 75, 'HOLD': 50, 'SELL': 25, 'STRONG_SELL': 0 } base_score = action_weights.get(action, 50) # تعديل الدرجة بناء على مستوى الثقة if confidence > 0.8: adjusted_score = base_score * 1.2 elif confidence > 0.6: adjusted_score = base_score * 1.0 else: adjusted_score = base_score * 0.8 # إذا كان هناك تحذير حرج، نعطي وزن إضافي if trading_signal.get('critical_alert', False): if action in ['STRONG_SELL', 'SELL']: adjusted_score = max(0, adjusted_score - 20) elif action in ['STRONG_BUY', 'BUY']: adjusted_score = min(100, adjusted_score + 20) return min(100, max(0, adjusted_score)) def format_whale_impact_for_display(whale_analysis): """تنسيق تأثير الحيتان للعرض في الواجهة""" impact_score = calculate_whale_impact_score(whale_analysis) if impact_score >= 80: return "🟢 تأثير إيجابي قوي" elif impact_score >= 60: return "🟡 تأثير إيجابي متوسط" elif impact_score >= 40: return "⚪ تأثير محايد" elif impact_score >= 20: return "🟠 تأثير سلبي متوسط" else: return "🔴 تأثير سلبي قوي" def should_override_trade_decision(base_decision, whale_analysis): """تحديد إذا كان يجب تغيير قرار التداول بناء على تحركات الحيتان""" if not whale_analysis or not whale_analysis.get('data_available', False): return False whale_signal = whale_analysis.get('trading_signal', {}) whale_action = whale_signal.get('action', 'HOLD') whale_confidence = whale_signal.get('confidence', 0.5) base_action = base_decision.get('action', 'HOLD') # شروط التغيير الإلزامي mandatory_override_conditions = [ whale_signal.get('critical_alert', False) and whale_confidence > 0.8, whale_confidence > 0.9 and whale_action in ['STRONG_SELL', 'STRONG_BUY'], base_action == 'BUY' and whale_action == 'STRONG_SELL' and whale_confidence > 0.7, base_action == 'SELL' and whale_action == 'STRONG_BUY' and whale_confidence > 0.7 ] return any(mandatory_override_conditions) # إضافة متغير الوقت إذا لم يكن موجوداً import time