# learning_hub/hub_manager.py # (محدث بالكامل - V2 - VADER Learning) import asyncio from typing import Any, Dict # (استيراد جميع المكونات الداخلية للمركز) from .schemas import * from .policy_engine import PolicyEngine from .memory_store import MemoryStore from .statistical_analyzer import StatisticalAnalyzer from .reflector import Reflector from .curator import Curator class LearningHubManager: def __init__(self, r2_service: Any, llm_service: Any, data_manager: Any): print("🚀 Initializing Learning Hub Manager...") # 1. الخدمات الأساسية (يتم تمريرها من app.py) self.r2_service = r2_service self.llm_service = llm_service self.data_manager = data_manager # 2. تهيئة المكونات (بناء النظام) self.policy_engine = PolicyEngine() self.memory_store = MemoryStore( r2_service=self.r2_service, policy_engine=self.policy_engine, llm_service=self.llm_service ) self.reflector = Reflector( llm_service=self.llm_service, memory_store=self.memory_store ) self.curator = Curator( llm_service=self.llm_service, memory_store=self.memory_store ) self.statistical_analyzer = StatisticalAnalyzer( r2_service=self.r2_service, data_manager=self.data_manager ) self.initialized = False print("✅ Learning Hub Manager constructed. Ready for initialization.") async def initialize(self): """ تهيئة جميع الأنظمة الفرعية، وخاصة تحميل الإحصائيات والأوزان. """ if self.initialized: return print("🔄 [HubManager] Initializing all sub-modules...") await self.statistical_analyzer.initialize() self.initialized = True print("✅ [HubManager] All sub-modules initialized. Learning Hub is LIVE.") async def analyze_trade_and_learn(self, trade_object: Dict[str, Any], close_reason: str): """ هذه هي الدالة الرئيسية التي يستدعيها TradeManager. إنها تشغل كلاً من نظام التعلم السريع (Reflector) والبطيء (StatsAnalyzer). """ if not self.initialized: print("⚠️ [HubManager] Learning Hub not initialized. Skipping learning.") return print(f"🧠 [HubManager] Learning from trade {trade_object.get('symbol')}...") try: # 1. التعلم السريع (Reflector): await self.reflector.analyze_trade_outcome(trade_object, close_reason) except Exception as e: print(f"❌ [HubManager] Reflector (Fast-Learner) failed: {e}") try: # 2. التعلم البطيء (StatisticalAnalyzer): await self.statistical_analyzer.update_statistics(trade_object, close_reason) except Exception as e: print(f"❌ [HubManager] StatisticalAnalyzer (Slow-Learner) failed: {e}") print(f"✅ [HubManager] Learning complete for {trade_object.get('symbol')}.") async def get_active_context_for_llm(self, domain: str, query: str) -> str: """ يُستخدم بواسطة LLMService لجلب "الدفتر" (Playbook) / القواعد (Deltas). """ if not self.initialized: return "Learning Hub not initialized." return await self.memory_store.get_active_context(domain, query) async def get_statistical_feedback_for_llm(self, entry_strategy: str) -> str: """ يُستخدم بواسطة LLMService لجلب أفضل ملف خروج (إحصائياً). """ if not self.initialized: return "Learning Hub not initialized." best_profile = await self.statistical_analyzer.get_best_exit_profile(entry_strategy) if best_profile != "unknown": # (Prompt in English as requested) feedback = f"Statistical Feedback: For the '{entry_strategy}' strategy, the '{best_profile}' exit profile has historically performed best." return feedback else: return "No statistical feedback available for this strategy yet." # 🔴 --- START OF CHANGE (V2 - VADER Learning) --- 🔴 async def get_statistical_news_score(self, raw_vader_score: float) -> float: """ يحول درجة VADER الخام إلى متوسط الربح/الخسارة التاريخي المتوقع. (يُستخدم بواسطة app.py / MLProcessor للترتيب الداخلي) """ if not self.initialized: return 0.0 # محايد # (جلب متوسط الربح/الخسارة الفعلي من المحلل الإحصائي) historical_pnl = await self.statistical_analyzer.get_statistical_vader_pnl(raw_vader_score) # (إرجاع النسبة المئوية للربح/الخسارة مباشرة، مثلاً: 1.1 أو -0.5) return historical_pnl # 🔴 --- END OF CHANGE --- 🔴 # 🔴 --- START OF CHANGE --- 🔴 async def get_optimized_weights(self, market_condition: str) -> Dict[str, float]: """ يُستخدم بواسطة MLProcessor/StrategyEngine/Sentry لجلب الأوزان المعدلة إحصائياً. """ if not self.initialized: # (الحصول على كل الأوزان الافتراضية) return await self.statistical_analyzer.get_default_strategy_weights() # (الحصول على كل الأوزان المحسنة) return await self.statistical_analyzer.get_optimized_weights(market_condition) # 🔴 --- END OF CHANGE --- 🔴 async def run_distillation_check(self): """ (يتم استدعاؤها دورياً من app.py) للتحقق من جميع المجالات وتشغيل التقطير إذا لزم الأمر. """ if not self.initialized: return print("ℹ️ [HubManager] Running periodic distillation check...") for domain in self.memory_store.domain_files.keys(): await self.curator.check_and_distill_domain(domain) print("✅ [HubManager] Distillation check complete.") # (No change to shutdown function) async def shutdown(self): """ Saves all persistent data from the statistical analyzer. """ if not self.initialized: return print("🔄 [HubManager] Shutting down... Saving all learning data.") try: await self.statistical_analyzer.save_weights_to_r2() await self.statistical_analyzer.save_performance_history() await self.statistical_analyzer.save_exit_profile_effectiveness() # 🔴 --- START OF CHANGE (V2 - VADER Learning) --- 🔴 await self.statistical_analyzer.save_vader_effectiveness() # 🔴 --- END OF CHANGE --- 🔴 print("✅ [HubManager] All statistical (slow-learner) data saved.") except Exception as e: print(f"❌ [HubManager] Failed to save learning data on shutdown: {e}") # 🔴 --- START OF CHANGE --- 🔴 # (تم حذف القوس } الزائد من هنا) # 🔴 --- END OF CHANGE --- 🔴