Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
|
@@ -1,33 +1,39 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
## create a new FASTAPI app instance
|
| 5 |
-
app=FastAPI()
|
| 6 |
|
| 7 |
# Initialize the text generation pipeline
|
| 8 |
#pipe = pipeline("text2text-generation", model="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF",token=os.getenv('HF_KEY'))
|
| 9 |
-
llm = Llama(
|
| 10 |
-
model_path="Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
|
| 11 |
-
)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from llama_cpp import Llama
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
llm = Llama(
|
| 6 |
+
model_path="Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
|
| 7 |
+
)
|
| 8 |
+
prompt = st.chat_input("Say something")
|
| 9 |
+
if prompt:
|
| 10 |
+
st.write(f"User has sent the following prompt: {prompt}")
|
| 11 |
|
| 12 |
## create a new FASTAPI app instance
|
| 13 |
+
# app=FastAPI()
|
| 14 |
|
| 15 |
# Initialize the text generation pipeline
|
| 16 |
#pipe = pipeline("text2text-generation", model="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF",token=os.getenv('HF_KEY'))
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
|
| 19 |
+
# @app.get("/")
|
| 20 |
+
# def home():
|
| 21 |
+
# print("helloe here")
|
| 22 |
+
# output= llm("What is the difference btw RAG and Fine tunning", max_tokens=1000)
|
| 23 |
+
# print(output["choices"][0]["text"])
|
| 24 |
+
# ## return the generate text in Json reposne
|
| 25 |
+
# return {"output":output["choices"][0]["text"]}
|
| 26 |
+
|
| 27 |
+
# # Define a function to handle the GET request at `/generate`
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# @app.get("/generate")
|
| 31 |
+
# def generate(text:str):
|
| 32 |
+
# ## use the pipeline to generate text from given input text
|
| 33 |
+
# print("Recieved prompt "+str(text))
|
| 34 |
+
# output= llm(text, max_tokens=1000)
|
| 35 |
+
# print(output["choices"][0]["text"])
|
| 36 |
+
# ## return the generate text in Json reposne
|
| 37 |
+
# return {"output":output["choices"][0]["text"]}
|
| 38 |
|
| 39 |
|