Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,10 +62,12 @@ else: # download all models
|
|
| 62 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
| 63 |
for model in models:
|
| 64 |
try:
|
|
|
|
| 65 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
| 66 |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 67 |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 68 |
-
except:
|
|
|
|
| 69 |
models.remove(model)
|
| 70 |
pipe = models[0].pipe_t2i
|
| 71 |
|
|
|
|
| 62 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
| 63 |
for model in models:
|
| 64 |
try:
|
| 65 |
+
print(f"Downloading {model.name} model...")
|
| 66 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
| 67 |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 68 |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print("Failed to load model " + model.name + ": " + str(e))
|
| 71 |
models.remove(model)
|
| 72 |
pipe = models[0].pipe_t2i
|
| 73 |
|