Spaces:
Sleeping
Sleeping
Update models/BertTunning.py
Browse files- models/BertTunning.py +7 -11
models/BertTunning.py
CHANGED
|
@@ -1,17 +1,13 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import numpy as np
|
| 3 |
import torch
|
| 4 |
from torch import nn
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
from preprocess_bert import preprocess_bert
|
| 10 |
|
| 11 |
MAX_LEN = 100
|
| 12 |
|
| 13 |
-
class BertTunnig(nn.Module):
|
| 14 |
|
|
|
|
| 15 |
def __init__(self, bert_model):
|
| 16 |
super().__init__()
|
| 17 |
|
|
@@ -37,9 +33,9 @@ class BertTunnig(nn.Module):
|
|
| 37 |
return torch.sigmoid(output)
|
| 38 |
|
| 39 |
|
| 40 |
-
model_tunning = BertTunnig(bert_model=
|
|
|
|
| 41 |
|
| 42 |
-
model_tunning.load_state_dict(torch.load('best_weights_berttinnug(2).pt'))
|
| 43 |
|
| 44 |
def predict_2(text):
|
| 45 |
|
|
@@ -48,6 +44,6 @@ def predict_2(text):
|
|
| 48 |
|
| 49 |
with torch.inference_mode():
|
| 50 |
|
| 51 |
-
predict = model_tunning(preprocessed_text, attention_mask=attention_mask).item()
|
| 52 |
|
| 53 |
-
return
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
|
|
|
| 3 |
|
| 4 |
+
from models.preprocess_stage.bert_model import model
|
| 5 |
+
from models.preprocess_stage.bert_model import preprocess_bert
|
|
|
|
| 6 |
|
| 7 |
MAX_LEN = 100
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
+
class BertTunnig(nn.Module):
|
| 11 |
def __init__(self, bert_model):
|
| 12 |
super().__init__()
|
| 13 |
|
|
|
|
| 33 |
return torch.sigmoid(output)
|
| 34 |
|
| 35 |
|
| 36 |
+
model_tunning = BertTunnig(bert_model=model)
|
| 37 |
+
model_tunning.load_state_dict(torch.load('models/weights/BertTunnigWeights.pt'))
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
def predict_2(text):
|
| 41 |
|
|
|
|
| 44 |
|
| 45 |
with torch.inference_mode():
|
| 46 |
|
| 47 |
+
predict = round(model_tunning(preprocessed_text, attention_mask=attention_mask).item())
|
| 48 |
|
| 49 |
+
return predict
|