Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torch.amp import autocast | |
| from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig | |
| from transformers.models.llama.modeling_llama import LlamaAttention | |
| from peft import LoraConfig, get_peft_model | |
| import os | |
| from typing import Optional, Tuple | |
| hf_token = os.getenv("HF_TOKEN") | |
| class BidirectionalLlamaAttention(LlamaAttention): | |
| def __init__(self, original_layer, masking='unidirectional'): | |
| super().__init__(original_layer.config, layer_idx=original_layer.layer_idx) | |
| self.masking = masking | |
| self.q_proj.weight = original_layer.q_proj.weight | |
| self.k_proj.weight = original_layer.k_proj.weight | |
| self.v_proj.weight = original_layer.v_proj.weight | |
| self.o_proj.weight = original_layer.o_proj.weight | |
| def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| def eager_attention_forward(self, module: nn.Module, query, key, value, attention_mask, scaling, dropout=0.0, **kwargs): | |
| key_states = self.repeat_kv(key, module.num_key_value_groups) | |
| value_states = self.repeat_kv(value, module.num_key_value_groups) | |
| attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
| if attention_mask is not None: | |
| attn_mask = (1.0 - attention_mask) * float('-inf') | |
| attn_mask = attn_mask.to(dtype=query.dtype) | |
| attn_weights = attn_weights + attn_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | |
| attn_output = torch.matmul(attn_weights, value_states).transpose(1, 2).contiguous() | |
| return attn_output, attn_weights | |
| def rotate_half(self, x): | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2:] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(self, q, k, cos, sin, unsqueeze_dim=1): | |
| cos = cos.unsqueeze(unsqueeze_dim) | |
| sin = sin.unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (self.rotate_half(q) * sin) | |
| k_embed = (k * cos) + (self.rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| def forward(self, hidden_states, position_embeddings, attention_mask=None, past_key_value=None, cache_position=None, **kwargs): | |
| input_shape = hidden_states.shape[:-1] | |
| hidden_shape = (*input_shape, -1, self.head_dim) | |
| query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| cos, sin = position_embeddings | |
| query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| attn_output, attn_weights = self.eager_attention_forward( | |
| self, query_states, key_states, value_states, attention_mask, | |
| dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs | |
| ) | |
| attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
| return self.o_proj(attn_output), attn_weights | |
| class CustomTransformerConfig(PretrainedConfig): | |
| def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, | |
| max_position_embeddings=4096, masking_type="bidirectional", **kwargs): | |
| super().__init__(**kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.prediction_chunk = prediction_chunk | |
| self.max_position_embeddings = max_position_embeddings | |
| self.input_size = prediction_chunk | |
| self.masking_type = masking_type | |
| class CustomTransformerModel(PreTrainedModel): | |
| config_class = CustomTransformerConfig | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token=hf_token) | |
| self.llama.resize_token_embeddings(config.vocab_size) | |
| # for i, layer in enumerate(self.llama.model.layers): | |
| # layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking=config.masking_type) | |
| for param in self.llama.parameters(): | |
| param.requires_grad = False | |
| for param in self.llama.lm_head.parameters(): | |
| param.requires_grad = True | |
| lora_config = LoraConfig( | |
| r=512, lora_alpha=512, lora_dropout=0.0, | |
| target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], | |
| bias="none", task_type=None | |
| ) | |
| self.llama = get_peft_model(self.llama, lora_config) | |
| self.llama.print_trainable_parameters() | |
| # self.llama = self.llama.to(torch.float16) | |
| def forward(self, input_ids, labels=None, **kwargs): | |
| batch_size, seq_len = input_ids.shape | |
| assert seq_len == self.config.prediction_chunk, f"Expected input length {self.config.prediction_chunk}, got {seq_len}" | |
| # Build attention mask | |
| device = input_ids.device | |
| masking_type = getattr(self.config, "masking_type", "bidirectional") | |
| if masking_type == 'bidirectional': | |
| base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
| elif masking_type == 'bidirectional_masked': | |
| base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
| base_mask.fill_diagonal_(False) | |
| elif masking_type == 'unidirectional': | |
| base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | |
| else: | |
| raise ValueError(f"Unknown masking type: {self.config.masking_type}") | |
| attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() | |
| attention_mask = attention_mask.to(dtype=torch.float32) # required for SDPA and Flash attention | |
| with autocast("cuda", dtype=torch.float16): | |
| outputs = self.llama( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| output_hidden_states=True, | |
| use_cache=False, | |
| **kwargs | |
| ) | |
| logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size) | |
| loss = None | |
| if labels is not None: | |
| assert labels.shape == (batch_size, seq_len), f"Labels shape mismatch: expected ({batch_size}, {seq_len}), got {labels.shape}" | |
| loss_fct = nn.CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |
| def disable_dropout(model): | |
| for name, module in model.named_modules(): | |
| if isinstance(module, nn.Dropout): | |
| setattr(model, name, nn.Identity()) | |
| return model |