Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torch.amp import autocast | |
| from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig | |
| from transformers.models.llama.modeling_llama import LlamaAttention | |
| from peft import LoraConfig, get_peft_model | |
| import os | |
| from typing import Optional, Tuple | |
| hf_token = os.getenv("HF_TOKEN") | |
| class CustomTransformerConfig(PretrainedConfig): | |
| def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, | |
| max_position_embeddings=4096, masking_type="bidirectional", **kwargs): | |
| super().__init__(**kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.prediction_chunk = prediction_chunk | |
| self.max_position_embeddings = max_position_embeddings | |
| self.input_size = prediction_chunk | |
| self.masking_type = masking_type | |
| class CustomTransformerModel(PreTrainedModel): | |
| config_class = CustomTransformerConfig | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token=hf_token) | |
| self.llama.resize_token_embeddings(config.vocab_size) | |
| for param in self.llama.parameters(): | |
| param.requires_grad = False | |
| for param in self.llama.lm_head.parameters(): | |
| param.requires_grad = True | |
| lora_config = LoraConfig( | |
| r=512, lora_alpha=512, lora_dropout=0.0, | |
| target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], | |
| bias="none", task_type=None | |
| ) | |
| self.llama = get_peft_model(self.llama, lora_config) | |
| self.llama.print_trainable_parameters() | |
| def forward(self, input_ids, labels=None, **kwargs): | |
| batch_size, seq_len = input_ids.shape | |
| assert seq_len == self.config.prediction_chunk, f"Expected input length {self.config.prediction_chunk}, got {seq_len}" | |
| # Build attention mask | |
| device = input_ids.device | |
| masking_type = getattr(self.config, "masking_type", "bidirectional") | |
| if masking_type == 'bidirectional': | |
| base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
| elif masking_type == 'bidirectional_masked': | |
| base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
| base_mask.fill_diagonal_(False) | |
| elif masking_type == 'unidirectional': | |
| base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | |
| else: | |
| raise ValueError(f"Unknown masking type: {self.config.masking_type}") | |
| attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() | |
| attention_mask = attention_mask.to(dtype=torch.float32) # required for SDPA and Flash attention | |
| with autocast("cuda", dtype=torch.float16): | |
| outputs = self.llama( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| output_hidden_states=True, | |
| use_cache=False, | |
| **kwargs | |
| ) | |
| logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size) | |
| loss = None | |
| if labels is not None: | |
| assert labels.shape == (batch_size, seq_len), f"Labels shape mismatch: expected ({batch_size}, {seq_len}), got {labels.shape}" | |
| loss_fct = nn.CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |
| def disable_dropout(model): | |
| for name, module in model.named_modules(): | |
| if isinstance(module, nn.Dropout): | |
| setattr(model, name, nn.Identity()) | |
| return model |