Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn as nn | |
| from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig | |
| from transformers.models.llama.modeling_llama import LlamaAttention | |
| from torch.amp import autocast | |
| from peft import LoraConfig, get_peft_model | |
| from typing import Optional, Tuple | |
| import torch | |
| import os | |
| hf_token = os.getenv("HF_TOKEN") | |
| class BidirectionalLlamaAttention(LlamaAttention): | |
| def __init__(self, original_layer, masking = 'unidirectional'): | |
| super().__init__(original_layer.config, layer_idx=original_layer.layer_idx) | |
| self.masking = masking | |
| # Copy weights from original layer | |
| self.q_proj.weight = original_layer.q_proj.weight | |
| self.k_proj.weight = original_layer.k_proj.weight | |
| self.v_proj.weight = original_layer.v_proj.weight | |
| self.o_proj.weight = original_layer.o_proj.weight | |
| def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| def eager_attention_forward(self, | |
| module: nn.Module, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor], | |
| scaling: float, | |
| dropout: float = 0.0, | |
| **kwargs, | |
| ): | |
| key_states = self.repeat_kv(key, module.num_key_value_groups) | |
| value_states = self.repeat_kv(value, module.num_key_value_groups) | |
| attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
| if attention_mask is not None: | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights = attn_weights + causal_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| return attn_output, attn_weights | |
| def rotate_half(self, x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`, *optional*): | |
| Deprecated and unused. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| cos = cos.unsqueeze(unsqueeze_dim) | |
| sin = sin.unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (self.rotate_half(q) * sin) | |
| k_embed = (k * cos) + (self.rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| position_embeddings: Tuple[torch.Tensor, torch.Tensor], | |
| attention_mask: Optional[torch.Tensor], | |
| past_key_value: Optional[torch.Tensor] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ): | |
| input_shape = hidden_states.shape[:-1] | |
| hidden_shape = (*input_shape, -1, self.head_dim) | |
| query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| # Apply rotary embeddings | |
| cos, sin = position_embeddings | |
| query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # 🔄 **Modify the Attention Mask** | |
| seq_len = hidden_states.shape[1] | |
| batch_size = hidden_states.shape[0] | |
| if self.masking == 'bidirectional': | |
| base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) | |
| attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
| elif self.masking == 'bidirectional_masked': | |
| base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) | |
| base_mask[:, 1:].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D | |
| attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
| else: # unidirectional | |
| # 🚀 Standard autoregressive (causal) mask | |
| attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool)) | |
| attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
| # Call the default attention function | |
| attn_output, attn_weights = self.eager_attention_forward( | |
| self, | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask, # ✅ Custom mask is applied here | |
| dropout=0.0 if not self.training else self.attention_dropout, | |
| scaling=self.scaling, | |
| **kwargs, | |
| ) | |
| attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, attn_weights | |
| def _split_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Splits hidden_size dim into attn_head_size and num_heads | |
| """ | |
| new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | |
| tensor = tensor.view(*new_shape) | |
| return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
| def _merge_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Merges attn_head_size dim and num_attn_heads dim into hidden_size | |
| """ | |
| tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
| new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | |
| return tensor.view(new_shape) | |
| class CustomTransformerConfig(PretrainedConfig): | |
| def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs): | |
| super().__init__(**kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.prediction_chunk = prediction_chunk | |
| self.max_position_embeddings = max_position_embeddings | |
| self.input_size = prediction_chunk | |
| class CustomTransformerModel(PreTrainedModel): | |
| config_class = CustomTransformerConfig | |
| def __init__(self, config): | |
| super().__init__(config) | |
| # Load pre-trained Llama model (excluding its original lm_head) | |
| self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token) | |
| self.llama.resize_token_embeddings(config.vocab_size) | |
| for i, layer in enumerate(self.llama.model.layers): | |
| layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional') | |
| # Freeze Llama to retain pre-trained knowledge | |
| for param in self.llama.parameters(): | |
| param.requires_grad = False | |
| for param in self.llama.lm_head.parameters(): | |
| param.requires_grad = True | |
| lora_config = LoraConfig( | |
| r=256, | |
| lora_alpha=256, | |
| lora_dropout=0.0, | |
| target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules | |
| bias="none", | |
| task_type=None | |
| ) | |
| self.llama = get_peft_model(self.llama, lora_config) | |
| self.llama.print_trainable_parameters() # Print number of trainable parameters | |
| self.llama = self.llama.to(torch.float16) | |
| def forward(self, input_ids, labels=None, **kwargs): | |
| batch_size, seq_length = input_ids.shape | |
| assert seq_length == 256, f"Expected input length input_size, got {seq_length}" | |
| with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage | |
| outputs = self.llama(input_ids, output_hidden_states=True, **kwargs) | |
| logits = outputs.logits[:,:,:self.config.vocab_size] | |
| # Reshape logits to (batch, input_size, vocab_size) | |
| logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size) | |
| loss = None | |
| if labels is not None: | |
| assert labels.shape == (batch_size, 256), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}" | |
| # Compute loss | |
| loss_fct = torch.nn.CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |
| def disable_dropout(model): | |
| for name, module in model.named_modules(): | |
| if isinstance(module, nn.Dropout): | |
| setattr(model, name, nn.Identity()) | |
| return model | |