Spaces:
Running
on
Zero
Running
on
Zero
Fix loading of model and tokenizer
Browse filesChange location of inference functions
app.py
CHANGED
|
@@ -29,56 +29,8 @@ hf_token = os.getenv("HF_TOKEN")
|
|
| 29 |
if hf_token is None:
|
| 30 |
raise ValueError("HF_TOKEN is not set")
|
| 31 |
|
| 32 |
-
# --- Load tokenizer ---
|
| 33 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B", use_fast=True, token=hf_token)
|
| 34 |
-
vocab_size = len(tokenizer)
|
| 35 |
-
eos_token_id = tokenizer.eos_token_id
|
| 36 |
-
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
|
| 37 |
-
assistant_marker_ids = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>", add_special_tokens=False)
|
| 38 |
-
|
| 39 |
rng = np.random.default_rng()
|
| 40 |
|
| 41 |
-
# --- Utility Functions ---
|
| 42 |
-
def decode_tokens_safe(token_ids):
|
| 43 |
-
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
|
| 44 |
-
|
| 45 |
-
def find_answer_start(input_ids, marker_ids):
|
| 46 |
-
for i in range(len(input_ids) - len(marker_ids) + 1):
|
| 47 |
-
if input_ids[i:i + len(marker_ids)] == marker_ids:
|
| 48 |
-
return i + len(marker_ids)
|
| 49 |
-
return None
|
| 50 |
-
|
| 51 |
-
def get_noising_schedule(i, max_it, sharpness=5.0):
|
| 52 |
-
x = i / max_it
|
| 53 |
-
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
| 54 |
-
|
| 55 |
-
def noisify_answer(input_ids, answer_start, threshold=1.0, clustering=0.5, noise_start = 1.0):
|
| 56 |
-
noised = input_ids.copy()
|
| 57 |
-
answer_len = len(noised) - answer_start
|
| 58 |
-
num_to_noise = int(threshold * answer_len * noise_start)
|
| 59 |
-
mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0]
|
| 60 |
-
|
| 61 |
-
if num_to_noise == 0:
|
| 62 |
-
return noised, []
|
| 63 |
-
|
| 64 |
-
num_clusters = max(1, int((1 - clustering) * num_to_noise))
|
| 65 |
-
cluster_size = max(1, int(num_to_noise / num_clusters))
|
| 66 |
-
|
| 67 |
-
noised_indices = set()
|
| 68 |
-
for _ in range(num_clusters):
|
| 69 |
-
center = rng.integers(answer_start, len(noised))
|
| 70 |
-
span_start = max(answer_start, center - cluster_size // 2)
|
| 71 |
-
span_end = min(len(noised), span_start + cluster_size)
|
| 72 |
-
noised_indices.update(range(span_start, span_end))
|
| 73 |
-
|
| 74 |
-
noised_indices = sorted(list(noised_indices))[:num_to_noise]
|
| 75 |
-
|
| 76 |
-
for idx in noised_indices:
|
| 77 |
-
noised[idx] = mask_token_id
|
| 78 |
-
|
| 79 |
-
return noised, noised_indices
|
| 80 |
-
|
| 81 |
-
|
| 82 |
# Add new noising function
|
| 83 |
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, noise_start=1.0):
|
| 84 |
noised = input_ids.copy()
|
|
@@ -121,33 +73,6 @@ def confidence_guided_noising(input_ids, answer_start, confidences, noise_clippi
|
|
| 121 |
noised_indices = sorted(noised_indices)
|
| 122 |
return noised, noised_indices
|
| 123 |
|
| 124 |
-
def filter_logits(logits, top_k=0, top_p=0.0):
|
| 125 |
-
"""Filter logits per position for top-k / nucleus (top-p) sampling."""
|
| 126 |
-
logits = logits.clone() # don't modify in-place
|
| 127 |
-
batch_size, seq_len, vocab_size = logits.shape
|
| 128 |
-
|
| 129 |
-
for i in range(seq_len):
|
| 130 |
-
token_logits = logits[0, i]
|
| 131 |
-
|
| 132 |
-
if top_k > 0:
|
| 133 |
-
top_values, _ = torch.topk(token_logits, top_k)
|
| 134 |
-
threshold = top_values[-1]
|
| 135 |
-
token_logits[token_logits < threshold] = float("-inf")
|
| 136 |
-
|
| 137 |
-
if top_p > 0.0:
|
| 138 |
-
sorted_logits, sorted_indices = torch.sort(token_logits, descending=True)
|
| 139 |
-
cumulative_probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
| 140 |
-
|
| 141 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
| 142 |
-
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
|
| 143 |
-
sorted_indices_to_remove[0] = 0 # always keep at least 1 token
|
| 144 |
-
|
| 145 |
-
token_logits[sorted_indices[sorted_indices_to_remove]] = float("-inf")
|
| 146 |
-
|
| 147 |
-
logits[0, i] = token_logits
|
| 148 |
-
|
| 149 |
-
return logits
|
| 150 |
-
|
| 151 |
@spaces.GPU
|
| 152 |
def generate_diffusion_text(input_ids, top_p, top_k):
|
| 153 |
with torch.no_grad():
|
|
@@ -198,7 +123,7 @@ def diffusion_chat(question, max_it, pause_length, sharpness,
|
|
| 198 |
|
| 199 |
ori_input_tokens = input_ids
|
| 200 |
current_tokens, just_noised_indices = noisify_answer(
|
| 201 |
-
input_ids, answer_start, threshold=1.0, clustering=clustering, noise_start = 1.0,
|
| 202 |
)
|
| 203 |
yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
|
| 204 |
time.sleep(pause_length)
|
|
@@ -257,7 +182,7 @@ def diffusion_chat(question, max_it, pause_length, sharpness,
|
|
| 257 |
# just_noised_indices = []
|
| 258 |
else:
|
| 259 |
noised_answer, just_noised_indices = noisify_answer(
|
| 260 |
-
current_tokens, answer_start, threshold=threshold, clustering=clustering, noise_start = noise_start,
|
| 261 |
)
|
| 262 |
|
| 263 |
# --- RED HIGHLIGHT ---
|
|
@@ -302,9 +227,14 @@ ckpt_path = hf_hub_download(
|
|
| 302 |
filename="diffusion-model.pth",
|
| 303 |
token=os.getenv("HF_TOKEN")
|
| 304 |
)
|
| 305 |
-
model = load_trained_model(checkpoint_path=ckpt_path)
|
| 306 |
print("✅ Model loaded.")
|
| 307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
demo = gr.Interface(
|
| 309 |
fn=diffusion_chat,
|
| 310 |
inputs=[
|
|
|
|
| 29 |
if hf_token is None:
|
| 30 |
raise ValueError("HF_TOKEN is not set")
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
rng = np.random.default_rng()
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Add new noising function
|
| 35 |
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, noise_start=1.0):
|
| 36 |
noised = input_ids.copy()
|
|
|
|
| 73 |
noised_indices = sorted(noised_indices)
|
| 74 |
return noised, noised_indices
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
@spaces.GPU
|
| 77 |
def generate_diffusion_text(input_ids, top_p, top_k):
|
| 78 |
with torch.no_grad():
|
|
|
|
| 123 |
|
| 124 |
ori_input_tokens = input_ids
|
| 125 |
current_tokens, just_noised_indices = noisify_answer(
|
| 126 |
+
input_ids, answer_start, tokenizer, threshold=1.0, clustering=clustering, noise_start = 1.0,
|
| 127 |
)
|
| 128 |
yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
|
| 129 |
time.sleep(pause_length)
|
|
|
|
| 182 |
# just_noised_indices = []
|
| 183 |
else:
|
| 184 |
noised_answer, just_noised_indices = noisify_answer(
|
| 185 |
+
current_tokens, answer_start, tokenizer, threshold=threshold, clustering=clustering, noise_start = noise_start,
|
| 186 |
)
|
| 187 |
|
| 188 |
# --- RED HIGHLIGHT ---
|
|
|
|
| 227 |
filename="diffusion-model.pth",
|
| 228 |
token=os.getenv("HF_TOKEN")
|
| 229 |
)
|
| 230 |
+
model, tokenizer = load_trained_model(checkpoint_path=ckpt_path)
|
| 231 |
print("✅ Model loaded.")
|
| 232 |
|
| 233 |
+
vocab_size = len(tokenizer)
|
| 234 |
+
eos_token_id = tokenizer.eos_token_id
|
| 235 |
+
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
|
| 236 |
+
assistant_marker_ids = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>", add_special_tokens=False)
|
| 237 |
+
|
| 238 |
demo = gr.Interface(
|
| 239 |
fn=diffusion_chat,
|
| 240 |
inputs=[
|
infer.py
CHANGED
|
@@ -82,8 +82,8 @@ def filter_logits(logits, top_k=0, top_p=1.0, temperature=1.0):
|
|
| 82 |
|
| 83 |
return logits
|
| 84 |
|
| 85 |
-
|
| 86 |
-
def decode_tokens_safe(
|
| 87 |
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
|
| 88 |
|
| 89 |
def find_answer_start(input_ids, marker_ids):
|
|
@@ -92,24 +92,36 @@ def find_answer_start(input_ids, marker_ids):
|
|
| 92 |
return i + len(marker_ids)
|
| 93 |
return None
|
| 94 |
|
| 95 |
-
def noisify_answer(input_ids, answer_start, threshold=1.0, is_unmasked=None, mask_token_id=128002):
|
| 96 |
-
noised = input_ids.copy()
|
| 97 |
-
total_len = len(input_ids)
|
| 98 |
-
candidates = [
|
| 99 |
-
i for i in range(answer_start, total_len)
|
| 100 |
-
if is_unmasked is None or not is_unmasked[i]
|
| 101 |
-
]
|
| 102 |
-
num_to_add = int(threshold * total_len)
|
| 103 |
-
if num_to_add > 0 and len(candidates) > 0:
|
| 104 |
-
newly_masked = rng.choice(candidates, size=min(num_to_add, len(candidates)), replace=False)
|
| 105 |
-
for idx in newly_masked:
|
| 106 |
-
noised[idx] = mask_token_id
|
| 107 |
-
return noised
|
| 108 |
-
|
| 109 |
def get_noising_schedule(i, max_it, sharpness=5.0):
|
| 110 |
x = i / max_it
|
| 111 |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
import torch.nn.functional as F
|
| 114 |
|
| 115 |
def generate_diffusion_text(model, input_ids, answer_start, top_k=0, top_p=1.0, temperature=1.0,
|
|
|
|
| 82 |
|
| 83 |
return logits
|
| 84 |
|
| 85 |
+
# --- Utility Functions ---
|
| 86 |
+
def decode_tokens_safe(token_ids, tokenizer):
|
| 87 |
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
|
| 88 |
|
| 89 |
def find_answer_start(input_ids, marker_ids):
|
|
|
|
| 92 |
return i + len(marker_ids)
|
| 93 |
return None
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def get_noising_schedule(i, max_it, sharpness=5.0):
|
| 96 |
x = i / max_it
|
| 97 |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
| 98 |
|
| 99 |
+
def noisify_answer(input_ids, answer_start, tokenizer, threshold=1.0, clustering=0.5, noise_start = 1.0):
|
| 100 |
+
noised = input_ids.copy()
|
| 101 |
+
answer_len = len(noised) - answer_start
|
| 102 |
+
num_to_noise = int(threshold * answer_len * noise_start)
|
| 103 |
+
mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0]
|
| 104 |
+
|
| 105 |
+
if num_to_noise == 0:
|
| 106 |
+
return noised, []
|
| 107 |
+
|
| 108 |
+
num_clusters = max(1, int((1 - clustering) * num_to_noise))
|
| 109 |
+
cluster_size = max(1, int(num_to_noise / num_clusters))
|
| 110 |
+
|
| 111 |
+
noised_indices = set()
|
| 112 |
+
for _ in range(num_clusters):
|
| 113 |
+
center = rng.integers(answer_start, len(noised))
|
| 114 |
+
span_start = max(answer_start, center - cluster_size // 2)
|
| 115 |
+
span_end = min(len(noised), span_start + cluster_size)
|
| 116 |
+
noised_indices.update(range(span_start, span_end))
|
| 117 |
+
|
| 118 |
+
noised_indices = sorted(list(noised_indices))[:num_to_noise]
|
| 119 |
+
|
| 120 |
+
for idx in noised_indices:
|
| 121 |
+
noised[idx] = mask_token_id
|
| 122 |
+
|
| 123 |
+
return noised, noised_indices
|
| 124 |
+
|
| 125 |
import torch.nn.functional as F
|
| 126 |
|
| 127 |
def generate_diffusion_text(model, input_ids, answer_start, top_k=0, top_p=1.0, temperature=1.0,
|