Spaces:
Running
on
Zero
Running
on
Zero
Last try interface
Browse files
app.py
CHANGED
|
@@ -73,10 +73,6 @@ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0):
|
|
| 73 |
noised[idx] = val
|
| 74 |
return noised
|
| 75 |
|
| 76 |
-
print("Loading model...")
|
| 77 |
-
model = load_model()
|
| 78 |
-
print("✅ Model loaded.")
|
| 79 |
-
|
| 80 |
def generate_diffusion_text(input_ids, answer_start):
|
| 81 |
with torch.no_grad():
|
| 82 |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
|
|
@@ -86,22 +82,33 @@ def generate_diffusion_text(input_ids, answer_start):
|
|
| 86 |
sampled = torch.multinomial(probs, num_samples=1).squeeze().tolist()
|
| 87 |
return input_ids[:answer_start] + sampled[answer_start:]
|
| 88 |
|
| 89 |
-
# ---
|
|
|
|
| 90 |
@spaces.GPU
|
| 91 |
-
def diffusion_chat(
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
| 94 |
answer_start = find_answer_start(input_ids, assistant_marker_ids)
|
| 95 |
if answer_start is None:
|
| 96 |
-
yield "
|
| 97 |
return
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
prev_decoded_tokens = []
|
| 102 |
last_tokens = []
|
| 103 |
|
| 104 |
for i in range(max_it):
|
|
|
|
| 105 |
generated_tokens = generate_diffusion_text(current_tokens, answer_start)
|
| 106 |
current_tokens = generated_tokens
|
| 107 |
|
|
@@ -110,21 +117,24 @@ def diffusion_chat(message, system_prompt, eot_weight, max_it, sharpness):
|
|
| 110 |
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 111 |
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
|
| 121 |
prev_decoded_tokens = decoded_tokens
|
| 122 |
-
yield
|
| 123 |
-
"<div style='background:#f5f5f5;padding:0.5em;border-radius:0.5em'>{}</div></div>").format(i+1, ''.join(highlighted))
|
| 124 |
|
| 125 |
last_tokens.append(generated_tokens)
|
| 126 |
-
if len(last_tokens)
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
break
|
| 129 |
|
| 130 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
|
@@ -134,33 +144,27 @@ def diffusion_chat(message, system_prompt, eot_weight, max_it, sharpness):
|
|
| 134 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 135 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 136 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
message = gr.Textbox(label="User Message")
|
| 146 |
-
submit = gr.Button("Send")
|
| 147 |
-
with gr.Column(scale=1):
|
| 148 |
-
system_prompt = gr.Textbox(value="You are a helpful assistant.", label="System Message")
|
| 149 |
-
eot_weight = gr.Slider(0, 1, value=0.4, step=0.05, label="EOT token weight")
|
| 150 |
-
max_it = gr.Slider(1, 512, value=64, step=1, label="Max Iterations")
|
| 151 |
-
sharpness = gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="Noising Sharpness")
|
| 152 |
-
|
| 153 |
-
def wrapped_chat(message, history, system_prompt, eot_weight, max_it, sharpness):
|
| 154 |
-
history = history or []
|
| 155 |
-
for update in diffusion_chat(message, system_prompt, eot_weight, max_it, sharpness):
|
| 156 |
-
yield history + [(message, update)]
|
| 157 |
-
|
| 158 |
-
submit.click(
|
| 159 |
-
fn=wrapped_chat,
|
| 160 |
-
inputs=[message, chatbot, system_prompt, eot_weight, max_it, sharpness],
|
| 161 |
-
outputs=chatbot,
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
noised[idx] = val
|
| 74 |
return noised
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
def generate_diffusion_text(input_ids, answer_start):
|
| 77 |
with torch.no_grad():
|
| 78 |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
|
|
|
|
| 82 |
sampled = torch.multinomial(probs, num_samples=1).squeeze().tolist()
|
| 83 |
return input_ids[:answer_start] + sampled[answer_start:]
|
| 84 |
|
| 85 |
+
# --- Inference Wrapper ---
|
| 86 |
+
|
| 87 |
@spaces.GPU
|
| 88 |
+
def diffusion_chat(question, eot_weight, max_it, sharpness):
|
| 89 |
+
placeholder = "What do you know about the city of New York?"
|
| 90 |
+
if question.strip() == "":
|
| 91 |
+
question = placeholder
|
| 92 |
+
|
| 93 |
+
prompt = f"User: {question}\nAssistant:"
|
| 94 |
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
| 95 |
answer_start = find_answer_start(input_ids, assistant_marker_ids)
|
| 96 |
if answer_start is None:
|
| 97 |
+
yield "Error: Could not find Assistant marker in input."
|
| 98 |
return
|
| 99 |
|
| 100 |
+
if len(input_ids) < 256:
|
| 101 |
+
input_ids += [pad_token] * (256 - len(input_ids))
|
| 102 |
+
else:
|
| 103 |
+
input_ids = input_ids[:256]
|
| 104 |
+
|
| 105 |
+
ori_input_tokens = input_ids
|
| 106 |
+
current_tokens = noisify_answer(ori_input_tokens, answer_start, threshold=1.0, eot_weight=eot_weight)
|
| 107 |
prev_decoded_tokens = []
|
| 108 |
last_tokens = []
|
| 109 |
|
| 110 |
for i in range(max_it):
|
| 111 |
+
print('Generating output')
|
| 112 |
generated_tokens = generate_diffusion_text(current_tokens, answer_start)
|
| 113 |
current_tokens = generated_tokens
|
| 114 |
|
|
|
|
| 117 |
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 118 |
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
|
| 119 |
|
| 120 |
+
if filtered_prev_tokens:
|
| 121 |
+
highlighted = []
|
| 122 |
+
for tok_new, tok_old in zip(filtered_tokens, filtered_prev_tokens):
|
| 123 |
+
if tok_new != tok_old:
|
| 124 |
+
highlighted.append(f'<span style="color:green">{tokenizer.convert_tokens_to_string([tok_new])}</span>')
|
| 125 |
+
else:
|
| 126 |
+
highlighted.append(tokenizer.convert_tokens_to_string([tok_new]))
|
| 127 |
+
else:
|
| 128 |
+
highlighted = [tokenizer.convert_tokens_to_string([tok]) for tok in filtered_tokens]
|
| 129 |
|
| 130 |
prev_decoded_tokens = decoded_tokens
|
| 131 |
+
yield f"<b>Iteration {i+1}/{max_it} (running):</b><br>" + "".join(highlighted)
|
|
|
|
| 132 |
|
| 133 |
last_tokens.append(generated_tokens)
|
| 134 |
+
if len(last_tokens) > 3:
|
| 135 |
+
last_tokens.pop(0)
|
| 136 |
+
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
|
| 137 |
+
yield f"<b>Stopped early after {i+1} iterations.</b>"
|
| 138 |
break
|
| 139 |
|
| 140 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
|
|
|
| 144 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 145 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 146 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|
| 147 |
+
print(final_output)
|
| 148 |
+
yield f"<b>Final Output (after {i+1} iterations):</b><br>" + final_output
|
| 149 |
+
|
| 150 |
+
# --- Gradio Interface ---
|
| 151 |
+
|
| 152 |
+
print("Loading model...")
|
| 153 |
+
model = load_model()
|
| 154 |
+
print("✅ Model loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
demo = gr.Interface(
|
| 157 |
+
fn=diffusion_chat,
|
| 158 |
+
inputs=[
|
| 159 |
+
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
|
| 160 |
+
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
|
| 161 |
+
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
|
| 162 |
+
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)")
|
| 163 |
+
],
|
| 164 |
+
outputs=[gr.HTML(label="Diffusion Output")],
|
| 165 |
+
title="Diffusion Language Model Chat",
|
| 166 |
+
theme="default",
|
| 167 |
+
description="This interface runs a diffusion-based language model to generate answers progressively."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
demo.launch(share=True)
|