Spaces:
Running
on
Zero
Running
on
Zero
Change back to normal model
Browse files
app.py
CHANGED
|
@@ -25,51 +25,51 @@ with open("token_probabilities.json") as f:
|
|
| 25 |
token_probs_dict = json.load(f)
|
| 26 |
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32)
|
| 27 |
|
| 28 |
-
def load_model():
|
| 29 |
-
ckpt_path = hf_hub_download(
|
| 30 |
-
repo_id="ruurd/tini_bi_m",
|
| 31 |
-
filename="diffusion-model.pth",
|
| 32 |
-
token=os.getenv("HF_TOKEN")
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
-
model = torch.load(ckpt_path, map_location=device)
|
| 37 |
-
model = disable_dropout(model)
|
| 38 |
-
model.to(device)
|
| 39 |
-
model.eval()
|
| 40 |
-
return model
|
| 41 |
-
|
| 42 |
# def load_model():
|
| 43 |
# ckpt_path = hf_hub_download(
|
| 44 |
-
# repo_id="ruurd/
|
| 45 |
# filename="diffusion-model.pth",
|
| 46 |
-
# token=os.getenv("HF_TOKEN")
|
| 47 |
-
# revision="5a22a8b6168466dbbf704efd00d8cbf2eee51426",
|
| 48 |
# )
|
| 49 |
|
| 50 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
# full_model = torch.load(ckpt_path, map_location=device)
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
# state_dict = full_model.state_dict()
|
| 61 |
-
# except AttributeError:
|
| 62 |
-
# state_dict = full_model # already a state_dict
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
# print("Missing keys:", missing)
|
| 67 |
-
# print("Unexpected keys:", unexpected)
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
|
|
|
|
| 25 |
token_probs_dict = json.load(f)
|
| 26 |
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# def load_model():
|
| 29 |
# ckpt_path = hf_hub_download(
|
| 30 |
+
# repo_id="ruurd/tini_bi_m",
|
| 31 |
# filename="diffusion-model.pth",
|
| 32 |
+
# token=os.getenv("HF_TOKEN")
|
|
|
|
| 33 |
# )
|
| 34 |
|
| 35 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
+
# model = torch.load(ckpt_path, map_location=device)
|
| 37 |
+
# model = disable_dropout(model)
|
| 38 |
+
# model.to(device)
|
| 39 |
+
# model.eval()
|
| 40 |
+
# return model
|
| 41 |
|
| 42 |
+
def load_model():
|
| 43 |
+
ckpt_path = hf_hub_download(
|
| 44 |
+
repo_id="ruurd/tini_bi",
|
| 45 |
+
filename="diffusion-model.pth",
|
| 46 |
+
token=os.getenv("HF_TOKEN"),
|
| 47 |
+
revision="5a22a8b6168466dbbf704efd00d8cbf2eee51426",
|
| 48 |
+
)
|
| 49 |
|
| 50 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 51 |
|
| 52 |
+
# Step 1: Create model from scratch
|
| 53 |
+
model = CustomTransformerModel(CustomTransformerConfig())
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Step 2: Load state_dict from full checkpoint
|
| 56 |
+
full_model = torch.load(ckpt_path, map_location=device)
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# This handles both full model or just state_dict
|
| 59 |
+
try:
|
| 60 |
+
state_dict = full_model.state_dict()
|
| 61 |
+
except AttributeError:
|
| 62 |
+
state_dict = full_model # already a state_dict
|
| 63 |
+
|
| 64 |
+
# Step 3: Load weights (might print mismatches)
|
| 65 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False)
|
| 66 |
+
print("Missing keys:", missing)
|
| 67 |
+
print("Unexpected keys:", unexpected)
|
| 68 |
+
|
| 69 |
+
model = disable_dropout(model)
|
| 70 |
+
model.to(device)
|
| 71 |
+
model.eval()
|
| 72 |
+
return model
|
| 73 |
|
| 74 |
|
| 75 |
|