Spaces:
Running
on
Zero
Running
on
Zero
Smooth confidence guided noising
Browse files
app.py
CHANGED
|
@@ -82,9 +82,13 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
| 82 |
if num_to_noise == 0:
|
| 83 |
return noised
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
indices = rng.choice(
|
| 90 |
np.arange(answer_start, len(input_ids)),
|
|
@@ -104,6 +108,7 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
| 104 |
return noised
|
| 105 |
|
| 106 |
|
|
|
|
| 107 |
@spaces.GPU
|
| 108 |
def generate_diffusion_text(input_ids, answer_start):
|
| 109 |
with torch.no_grad():
|
|
|
|
| 82 |
if num_to_noise == 0:
|
| 83 |
return noised
|
| 84 |
|
| 85 |
+
# Avoid zero-probability weights
|
| 86 |
+
raw_weights = 1.0 - np.array(confidences[answer_start:])
|
| 87 |
+
raw_weights = np.clip(raw_weights, 1e-6, None) # prevent exact 0s
|
| 88 |
+
weights = raw_weights / raw_weights.sum()
|
| 89 |
+
|
| 90 |
+
if num_to_noise > len(weights):
|
| 91 |
+
num_to_noise = len(weights) # safety: can’t sample more than available
|
| 92 |
|
| 93 |
indices = rng.choice(
|
| 94 |
np.arange(answer_start, len(input_ids)),
|
|
|
|
| 108 |
return noised
|
| 109 |
|
| 110 |
|
| 111 |
+
|
| 112 |
@spaces.GPU
|
| 113 |
def generate_diffusion_text(input_ids, answer_start):
|
| 114 |
with torch.no_grad():
|