Spaces:
Running
on
Zero
Running
on
Zero
Fix generation
Browse files
app.py
CHANGED
|
@@ -130,7 +130,7 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
| 130 |
|
| 131 |
|
| 132 |
@spaces.GPU
|
| 133 |
-
def generate_diffusion_text(input_ids
|
| 134 |
with torch.no_grad():
|
| 135 |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
|
| 136 |
logits = model(input_ids=input_tensor)["logits"]
|
|
@@ -170,15 +170,24 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
|
|
| 170 |
|
| 171 |
for i in range(max_it):
|
| 172 |
print('Generating output')
|
| 173 |
-
generated_tokens, confidences = generate_diffusion_text(current_tokens, answer_start)
|
| 174 |
-
current_tokens = generated_tokens
|
| 175 |
|
| 176 |
-
#
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
highlighted = []
|
| 181 |
for j, tok in enumerate(decoded_tokens):
|
|
|
|
|
|
|
|
|
|
| 182 |
token_str = tokenizer.convert_tokens_to_string([tok])
|
| 183 |
if prev_decoded_tokens and j < len(prev_decoded_tokens) and tok != prev_decoded_tokens[j]:
|
| 184 |
highlighted.append(f'<span style="color:green">{token_str}</span>')
|
|
@@ -189,27 +198,29 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
|
|
| 189 |
yield f"<b>Iteration {i+1}/{max_it} (after generation):</b><br>" + "".join(highlighted).replace('\n', '<br>')
|
| 190 |
time.sleep(0.1)
|
| 191 |
|
| 192 |
-
# ---
|
| 193 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
| 194 |
if use_confidence_noising:
|
| 195 |
-
|
| 196 |
generated_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping
|
| 197 |
)
|
| 198 |
-
just_noised_indices = []
|
| 199 |
else:
|
| 200 |
-
|
| 201 |
generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
|
| 202 |
)
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
|
|
|
|
|
|
|
| 207 |
highlighted = []
|
| 208 |
for j, tok in enumerate(decoded_tokens):
|
| 209 |
tok_id = tokenizer.convert_tokens_to_ids(tok)
|
| 210 |
if tok_id == eot_token_id:
|
| 211 |
-
continue
|
| 212 |
-
|
| 213 |
token_str = tokenizer.convert_tokens_to_string([tok])
|
| 214 |
abs_idx = answer_start + j
|
| 215 |
if abs_idx in just_noised_indices:
|
|
@@ -228,8 +239,6 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
|
|
| 228 |
yield f"<b>Stopped early after {i+1} iterations.</b>"
|
| 229 |
break
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 234 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 235 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
@spaces.GPU
|
| 133 |
+
def generate_diffusion_text(input_ids):
|
| 134 |
with torch.no_grad():
|
| 135 |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
|
| 136 |
logits = model(input_ids=input_tensor)["logits"]
|
|
|
|
| 170 |
|
| 171 |
for i in range(max_it):
|
| 172 |
print('Generating output')
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
# Compose full input: original prompt + current answer
|
| 175 |
+
full_input_tokens = ori_input_tokens[:answer_start] + current_tokens[answer_start:]
|
| 176 |
+
full_input_tokens = full_input_tokens[:256] + [pad_token] * max(0, 256 - len(full_input_tokens))
|
| 177 |
+
|
| 178 |
+
# Model step
|
| 179 |
+
generated_tokens, confidences = generate_diffusion_text(full_input_tokens)
|
| 180 |
|
| 181 |
+
# Save full output for noising step
|
| 182 |
+
current_tokens = generated_tokens
|
| 183 |
+
|
| 184 |
+
# --- GREEN HIGHLIGHT ---
|
| 185 |
+
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 186 |
highlighted = []
|
| 187 |
for j, tok in enumerate(decoded_tokens):
|
| 188 |
+
tok_id = tokenizer.convert_tokens_to_ids(tok)
|
| 189 |
+
if tok_id == eot_token_id:
|
| 190 |
+
continue
|
| 191 |
token_str = tokenizer.convert_tokens_to_string([tok])
|
| 192 |
if prev_decoded_tokens and j < len(prev_decoded_tokens) and tok != prev_decoded_tokens[j]:
|
| 193 |
highlighted.append(f'<span style="color:green">{token_str}</span>')
|
|
|
|
| 198 |
yield f"<b>Iteration {i+1}/{max_it} (after generation):</b><br>" + "".join(highlighted).replace('\n', '<br>')
|
| 199 |
time.sleep(0.1)
|
| 200 |
|
| 201 |
+
# --- NOISING STEP ---
|
| 202 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
| 203 |
if use_confidence_noising:
|
| 204 |
+
noised_answer = confidence_guided_noising(
|
| 205 |
generated_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping
|
| 206 |
)
|
| 207 |
+
just_noised_indices = []
|
| 208 |
else:
|
| 209 |
+
noised_answer, just_noised_indices = noisify_answer(
|
| 210 |
generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
|
| 211 |
)
|
| 212 |
|
| 213 |
+
# Compose full input again: prompt + noised answer
|
| 214 |
+
current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
|
| 215 |
+
current_tokens = current_tokens[:256] + [pad_token] * max(0, 256 - len(current_tokens))
|
| 216 |
|
| 217 |
+
# --- RED HIGHLIGHT ---
|
| 218 |
+
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 219 |
highlighted = []
|
| 220 |
for j, tok in enumerate(decoded_tokens):
|
| 221 |
tok_id = tokenizer.convert_tokens_to_ids(tok)
|
| 222 |
if tok_id == eot_token_id:
|
| 223 |
+
continue
|
|
|
|
| 224 |
token_str = tokenizer.convert_tokens_to_string([tok])
|
| 225 |
abs_idx = answer_start + j
|
| 226 |
if abs_idx in just_noised_indices:
|
|
|
|
| 239 |
yield f"<b>Stopped early after {i+1} iterations.</b>"
|
| 240 |
break
|
| 241 |
|
|
|
|
|
|
|
| 242 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
| 243 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
| 244 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|