File size: 20,608 Bytes
bb6d7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from datetime import datetime, timedelta

def render_monitoring():
    st.title("Monitoring Configuration")
    
    # Dashboard layout for monitoring configuration
    col1, col2 = st.columns([2, 3])
    
    with col1:
        st.subheader("Monitoring Settings")
        
        with st.form("monitoring_settings"):
            st.markdown("### General Settings")
            
            scan_frequency = st.select_slider(
                "Scan Frequency",
                options=["1 hour", "2 hours", "4 hours", "6 hours", "12 hours", "24 hours"],
                value="4 hours"
            )
            
            intelligence_sources = st.multiselect(
                "Intelligence Sources",
                ["Dark Web Forums", "Paste Sites", "Marketplaces", "Telegram Channels", "IRC Channels", "Ransomware Blogs", "Breach Databases", "Hacker Forums", "Social Media"],
                default=["Dark Web Forums", "Paste Sites", "Marketplaces", "Ransomware Blogs"]
            )
            
            st.markdown("### Alert Thresholds")
            
            col1a, col1b = st.columns(2)
            
            with col1a:
                critical_threshold = st.number_input("Critical Alert Threshold", min_value=1, max_value=100, value=80)
            
            with col1b:
                high_threshold = st.number_input("High Alert Threshold", min_value=1, max_value=100, value=60)
            
            col1c, col1d = st.columns(2)
            
            with col1c:
                medium_threshold = st.number_input("Medium Alert Threshold", min_value=1, max_value=100, value=40)
            
            with col1d:
                low_threshold = st.number_input("Low Alert Threshold", min_value=1, max_value=100, value=20)
            
            st.markdown("### Notification Channels")
            
            email_notify = st.checkbox("Email Notifications", value=True)
            if email_notify:
                email_recipients = st.text_input("Email Recipients", value="security@company.com, analyst@company.com")
            
            slack_notify = st.checkbox("Slack Notifications", value=True)
            if slack_notify:
                slack_channel = st.text_input("Slack Channel", value="#security-alerts")
            
            api_notify = st.checkbox("API Webhook", value=False)
            if api_notify:
                webhook_url = st.text_input("Webhook URL", placeholder="https://api.example.com/webhook")
            
            sms_notify = st.checkbox("SMS Notifications", value=False)
            if sms_notify:
                phone_numbers = st.text_input("Phone Numbers", placeholder="+1234567890, +0987654321")
            
            submit = st.form_submit_button("Save Configuration", type="primary")
            
            if submit:
                st.success("Monitoring configuration saved successfully!")
    
    with col2:
        st.subheader("Monitored Keywords & Entities")
        
        # Tabs for different monitoring categories
        tab1, tab2, tab3, tab4 = st.tabs(["Company Assets", "Credentials", "PII", "Custom Keywords"])
        
        with tab1:
            st.markdown("### Company Assets Monitoring")
            
            # Sample company assets to monitor
            company_assets = pd.DataFrame({
                "Asset Type": ["Domain", "Domain", "IP Range", "Brand", "Brand", "Product", "Technology"],
                "Value": ["company.com", "company-services.net", "198.51.100.0/24", "CompanyName", "ProductX", "ServiceY", "TechnologyZ"],
                "Priority": ["High", "Medium", "High", "Critical", "High", "Medium", "Low"],
                "Status": ["Active", "Active", "Active", "Active", "Active", "Active", "Active"]
            })
            
            # Editable dataframe
            edited_assets = st.data_editor(
                company_assets,
                num_rows="dynamic",
                column_config={
                    "Asset Type": st.column_config.SelectboxColumn(
                        "Asset Type",
                        options=["Domain", "IP Range", "Brand", "Product", "Technology", "Other"],
                    ),
                    "Priority": st.column_config.SelectboxColumn(
                        "Priority",
                        options=["Critical", "High", "Medium", "Low"],
                    ),
                    "Status": st.column_config.SelectboxColumn(
                        "Status",
                        options=["Active", "Paused"],
                    ),
                },
                use_container_width=True
            )
        
        with tab2:
            st.markdown("### Credentials Monitoring")
            
            # Sample credential monitoring settings
            credential_monitoring = pd.DataFrame({
                "Email Domain": ["@company.com", "@company-services.net", "@product-x.com"],
                "Include Subdomains": [True, True, False],
                "Monitor Password Breach": [True, True, True],
                "Alert Level": ["Critical", "High", "High"],
                "Status": ["Active", "Active", "Active"]
            })
            
            edited_credentials = st.data_editor(
                credential_monitoring,
                num_rows="dynamic",
                column_config={
                    "Include Subdomains": st.column_config.CheckboxColumn(
                        "Include Subdomains",
                        help="Monitor all subdomains",
                    ),
                    "Monitor Password Breach": st.column_config.CheckboxColumn(
                        "Monitor Password Breach",
                    ),
                    "Alert Level": st.column_config.SelectboxColumn(
                        "Alert Level",
                        options=["Critical", "High", "Medium", "Low"],
                    ),
                    "Status": st.column_config.SelectboxColumn(
                        "Status",
                        options=["Active", "Paused"],
                    ),
                },
                use_container_width=True
            )
        
        with tab3:
            st.markdown("### PII Monitoring")
            
            # Sample PII monitoring settings
            pii_monitoring = pd.DataFrame({
                "PII Type": ["SSN", "Credit Card", "Bank Account", "Passport Number", "Driver License"],
                "Monitor": [True, True, True, False, False],
                "Alert Level": ["Critical", "Critical", "High", "High", "Medium"],
                "Status": ["Active", "Active", "Active", "Paused", "Paused"]
            })
            
            edited_pii = st.data_editor(
                pii_monitoring,
                num_rows="dynamic",
                column_config={
                    "PII Type": st.column_config.SelectboxColumn(
                        "PII Type",
                        options=["SSN", "Credit Card", "Bank Account", "Passport Number", "Driver License", "Health Information", "Other"],
                    ),
                    "Monitor": st.column_config.CheckboxColumn(
                        "Monitor",
                    ),
                    "Alert Level": st.column_config.SelectboxColumn(
                        "Alert Level",
                        options=["Critical", "High", "Medium", "Low"],
                    ),
                    "Status": st.column_config.SelectboxColumn(
                        "Status",
                        options=["Active", "Paused"],
                    ),
                },
                use_container_width=True
            )
        
        with tab4:
            st.markdown("### Custom Keywords")
            
            # Sample custom keywords
            custom_keywords = pd.DataFrame({
                "Keyword": ["confidential memo", "project phoenix", "merger", "acquisition", "layoff", "security breach"],
                "Category": ["Internal Document", "Project", "Financial", "Financial", "HR", "Security"],
                "Alert Level": ["Critical", "High", "Critical", "Critical", "High", "Critical"],
                "Status": ["Active", "Active", "Active", "Active", "Active", "Active"]
            })
            
            edited_keywords = st.data_editor(
                custom_keywords,
                num_rows="dynamic",
                column_config={
                    "Category": st.column_config.SelectboxColumn(
                        "Category",
                        options=["Internal Document", "Project", "Financial", "HR", "Security", "Product", "Other"],
                    ),
                    "Alert Level": st.column_config.SelectboxColumn(
                        "Alert Level",
                        options=["Critical", "High", "Medium", "Low"],
                    ),
                    "Status": st.column_config.SelectboxColumn(
                        "Status",
                        options=["Active", "Paused"],
                    ),
                },
                use_container_width=True
            )
    
    # Monitoring sources and coverage
    st.markdown("---")
    st.subheader("Monitoring Sources & Coverage")
    
    # Create tabs for different monitoring source categories
    source_tab1, source_tab2, source_tab3 = st.tabs(["Dark Web Coverage", "Source Categories", "Geographic Coverage"])
    
    with source_tab1:
        # Dark web monitoring sources
        st.markdown("### Dark Web Monitoring Sources")
        
        # Sample data for dark web sources
        dark_web_sources = pd.DataFrame({
            "Source Type": ["Market", "Forum", "Forum", "Market", "Paste Site", "Leak Site", "Chat", "Market"],
            "Name": ["AlphaBay", "XSS Forum", "Exploit.in", "ASAP Market", "DeepPaste", "DarkLeak", "Telegram", "White House"],
            "Focus": ["General", "Hacking", "Credentials", "Drugs/Fraud", "Text sharing", "Data leaks", "Communication", "General"],
            "Coverage": [95, 90, 85, 80, 75, 70, 65, 60],
            "Status": ["Active", "Active", "Active", "Active", "Active", "Active", "Active", "Active"]
        })
        
        fig = px.bar(
            dark_web_sources,
            x="Name",
            y="Coverage",
            color="Coverage",
            color_continuous_scale=["#2ECC71", "#F1C40F", "#E74C3C"],
            text="Coverage",
            height=400
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            xaxis=dict(
                title=None,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                title="Coverage Percentage",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1')
            ),
            coloraxis_showscale=False
        )
        
        fig.update_traces(texttemplate='%{text}%', textposition='outside')
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Source details table
        st.dataframe(dark_web_sources, use_container_width=True)
    
    with source_tab2:
        # Source category distribution
        st.markdown("### Monitoring by Source Category")
        
        # Sample data for source categories
        source_categories = {
            "Category": ["Dark Web Markets", "Hacking Forums", "Paste Sites", "Telegram Channels", "IRC Channels", "Leak Sites", "Ransomware Blogs", "Social Media"],
            "Sources Count": [12, 15, 5, 18, 8, 7, 6, 10],
            "Coverage Score": [90, 85, 75, 70, 60, 95, 80, 65]
        }
        
        source_df = pd.DataFrame(source_categories)
        
        fig = px.scatter(
            source_df,
            x="Sources Count",
            y="Coverage Score",
            color="Coverage Score",
            color_continuous_scale=["#E74C3C", "#F1C40F", "#2ECC71"],
            size="Sources Count",
            hover_name="Category",
            height=400
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            xaxis=dict(
                title="Number of Sources",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                title="Coverage Score (%)",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1')
            ),
            coloraxis_showscale=False
        )
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Category details
        st.dataframe(source_df, use_container_width=True)
    
    with source_tab3:
        # Geographic coverage
        st.markdown("### Geographic Monitoring Coverage")
        
        # World map showing coverage
        st.image("https://images.unsplash.com/photo-1451187580459-43490279c0fa", 
                 caption="Global monitoring coverage across dark web sources", 
                 use_column_width=True)
        
        # Regional coverage metrics
        col_geo1, col_geo2, col_geo3, col_geo4 = st.columns(4)
        
        with col_geo1:
            st.metric(
                label="North America",
                value="92%",
                delta="3%",
                delta_color="normal"
            )
        
        with col_geo2:
            st.metric(
                label="Europe",
                value="88%",
                delta="5%",
                delta_color="normal"
            )
        
        with col_geo3:
            st.metric(
                label="Asia Pacific",
                value="76%",
                delta="8%",
                delta_color="normal"
            )
        
        with col_geo4:
            st.metric(
                label="Rest of World",
                value="65%",
                delta="12%",
                delta_color="normal"
            )
    
    # Monitoring performance metrics
    st.markdown("---")
    st.subheader("Monitoring Performance")
    
    # Performance metrics
    perf_col1, perf_col2, perf_col3, perf_col4 = st.columns(4)
    
    with perf_col1:
        st.metric(
            label="Scan Completion Rate",
            value="98.7%",
            delta="0.5%",
            delta_color="normal"
        )
    
    with perf_col2:
        st.metric(
            label="Avg. Scan Duration",
            value="43 min",
            delta="-7 min",
            delta_color="normal"
        )
    
    with perf_col3:
        st.metric(
            label="Monitored Keywords",
            value="1,247",
            delta="23",
            delta_color="normal"
        )
    
    with perf_col4:
        st.metric(
            label="Coverage Index",
            value="87/100",
            delta="5",
            delta_color="normal"
        )
    
    # Performance charts
    st.markdown("### Performance Trends")
    
    perf_tab1, perf_tab2 = st.tabs(["Scan Performance", "Detection Accuracy"])
    
    with perf_tab1:
        # Generate dates for the past 30 days
        dates = [(datetime.now() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(30, 0, -1)]
        
        # Sample data for scan performance
        scan_times = np.random.normal(45, 5, 30).astype(int)  # Mean 45 minutes, std 5 minutes
        success_rates = np.random.normal(98, 1, 30)  # Mean 98%, std 1%
        success_rates = [min(100, max(90, rate)) for rate in success_rates]  # Clamp between 90-100%
        
        scan_data = pd.DataFrame({
            'Date': dates,
            'Scan Time (min)': scan_times,
            'Success Rate (%)': success_rates
        })
        
        # Create a figure with two y-axes
        fig = go.Figure()
        
        # Add scan time line
        fig.add_trace(go.Scatter(
            x=scan_data['Date'],
            y=scan_data['Scan Time (min)'],
            name='Scan Time (min)',
            line=dict(color='#3498DB', width=2)
        ))
        
        # Add success rate line on secondary y-axis
        fig.add_trace(go.Scatter(
            x=scan_data['Date'],
            y=scan_data['Success Rate (%)'],
            name='Success Rate (%)',
            line=dict(color='#2ECC71', width=2),
            yaxis='y2'
        ))
        
        # Configure the layout with two y-axes
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            xaxis=dict(
                title="Date",
                showgrid=False,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                title="Scan Time (min)",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1'),
                range=[0, 60]
            ),
            yaxis2=dict(
                title="Success Rate (%)",
                showgrid=False,
                tickfont=dict(color='#ECF0F1'),
                overlaying='y',
                side='right',
                range=[90, 100]
            ),
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1,
                font=dict(color='#ECF0F1')
            ),
            height=400
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with perf_tab2:
        # Sample data for detection accuracy
        accuracy_data = pd.DataFrame({
            'Date': dates,
            'True Positives': np.random.randint(80, 100, 30),
            'False Positives': np.random.randint(5, 15, 30),
            'Precision': np.random.normal(92, 2, 30),
            'Recall': np.random.normal(90, 3, 30)
        })
        
        # Ensure precision and recall are within reasonable bounds
        accuracy_data['Precision'] = accuracy_data['Precision'].apply(lambda x: min(100, max(80, x)))
        accuracy_data['Recall'] = accuracy_data['Recall'].apply(lambda x: min(100, max(80, x)))
        
        # Create a figure with stacked bars and lines
        fig = go.Figure()
        
        # Add stacked bars for true and false positives
        fig.add_trace(go.Bar(
            x=accuracy_data['Date'],
            y=accuracy_data['True Positives'],
            name='True Positives',
            marker_color='#2ECC71'
        ))
        
        fig.add_trace(go.Bar(
            x=accuracy_data['Date'],
            y=accuracy_data['False Positives'],
            name='False Positives',
            marker_color='#E74C3C'
        ))
        
        # Add lines for precision and recall
        fig.add_trace(go.Scatter(
            x=accuracy_data['Date'],
            y=accuracy_data['Precision'],
            name='Precision (%)',
            line=dict(color='#3498DB', width=2),
            yaxis='y2'
        ))
        
        fig.add_trace(go.Scatter(
            x=accuracy_data['Date'],
            y=accuracy_data['Recall'],
            name='Recall (%)',
            line=dict(color='#F1C40F', width=2),
            yaxis='y2'
        ))
        
        # Configure the layout
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            barmode='stack',
            xaxis=dict(
                title="Date",
                showgrid=False,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                title="Alert Count",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis2=dict(
                title="Percentage (%)",
                showgrid=False,
                tickfont=dict(color='#ECF0F1'),
                overlaying='y',
                side='right',
                range=[80, 100]
            ),
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1,
                font=dict(color='#ECF0F1')
            ),
            height=400
        )
        
        st.plotly_chart(fig, use_container_width=True)