Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import jax | |
| import jax.numpy as jnp | |
| from diffusers import StableDiffusionInpaintPipeline | |
| from flax.jax_utils import replicate | |
| from flax.training.common_utils import shard | |
| from PIL import Image | |
| from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
| from diffusers import ( | |
| UniPCMultistepScheduler, | |
| FlaxStableDiffusionControlNetPipeline, | |
| FlaxControlNetModel, | |
| ) | |
| import colorsys | |
| sam_checkpoint = "sam_vit_h_4b8939.pth" | |
| model_type = "vit_h" | |
| device = "cpu" | |
| sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
| sam.to(device=device) | |
| predictor = SamPredictor(sam) | |
| mask_generator = SamAutomaticMaskGenerator(sam) | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "mfidabel/controlnet-segment-anything", dtype=jnp.float32 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| controlnet=controlnet, | |
| revision="flax", | |
| dtype=jnp.bfloat16, | |
| ) | |
| params["controlnet"] = controlnet_params | |
| p_params = replicate(params) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe = pipe.to(device) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation") | |
| gr.Markdown( | |
| """ | |
| We have trained a JAX ControlNet model with | |
| To try the demo, upload an image and select object(s) you want to inpaint. | |
| Write a prompt & a negative prompt to control the inpainting. | |
| Click on the "Submit" button to inpaint the selected object(s). | |
| Check "Background" to inpaint the background instead of the selected object(s). | |
| If the demo is slow, clone the space to your own HF account and run on a GPU. | |
| """ | |
| ) | |
| with gr.Row(): | |
| input_img = gr.Image(label="Input") | |
| mask_img = gr.Image(label="Mask", interactive=False) | |
| output_img = gr.Image(label="Output", interactive=False) | |
| with gr.Row(): | |
| prompt_text = gr.Textbox(lines=1, label="Prompt") | |
| negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| clear = gr.Button("Clear") | |
| def generate_mask(image, evt: gr.SelectData): | |
| predictor.set_image(image) | |
| input_point = np.array([120, 21]) | |
| input_label = np.ones(input_point.shape[0]) | |
| mask, _, _ = predictor.predict( | |
| point_coords=input_point, | |
| point_labels=input_label, | |
| multimask_output=False, | |
| ) | |
| # clear torch cache | |
| torch.cuda.empty_cache() | |
| mask = Image.fromarray(mask[0, :, :]) | |
| segs = mask_generator.generate(image) | |
| boolean_masks = [s["segmentation"] for s in segs] | |
| finseg = np.zeros( | |
| (boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8 | |
| ) | |
| # Loop over the boolean masks and assign a unique color to each class | |
| for class_id, boolean_mask in enumerate(boolean_masks): | |
| hue = class_id * 1.0 / len(boolean_masks) | |
| rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) | |
| rgb_mask = np.zeros( | |
| (boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8 | |
| ) | |
| rgb_mask[:, :, 0] = boolean_mask * rgb[0] | |
| rgb_mask[:, :, 1] = boolean_mask * rgb[1] | |
| rgb_mask[:, :, 2] = boolean_mask * rgb[2] | |
| finseg += rgb_mask | |
| torch.cuda.empty_cache() | |
| return mask, finseg | |
| def infer( | |
| image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 | |
| ): | |
| try: | |
| rng = jax.random.PRNGKey(int(seed)) | |
| num_inference_steps = int(num_inference_steps) | |
| image = Image.fromarray(image, mode="RGB") | |
| num_samples = max(jax.device_count(), int(num_samples)) | |
| p_rng = jax.random.split(rng, jax.device_count()) | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| negative_prompt_ids = pipe.prepare_text_inputs( | |
| [negative_prompts] * num_samples | |
| ) | |
| processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
| prompt_ids = shard(prompt_ids) | |
| negative_prompt_ids = shard(negative_prompt_ids) | |
| processed_image = shard(processed_image) | |
| output = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| prng_seed=p_rng, | |
| num_inference_steps=num_inference_steps, | |
| neg_prompt_ids=negative_prompt_ids, | |
| jit=True, | |
| ).images | |
| del negative_prompt_ids | |
| del processed_image | |
| del prompt_ids | |
| output = output.reshape((num_samples,) + output.shape[-3:]) | |
| final_image = [np.array(x * 255, dtype=np.uint8) for x in output] | |
| print(output.shape) | |
| del output | |
| except Exception as e: | |
| print("Error: " + str(e)) | |
| final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
| finally: | |
| gc.collect() | |
| return final_image | |
| def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
| img = None | |
| mask = None | |
| seg = None | |
| out = None | |
| prompt = "" | |
| neg_prompt = "" | |
| bg = False | |
| return img, mask, seg, out, prompt, neg_prompt, bg | |
| input_img.change( | |
| generate_mask, | |
| inputs=[input_img], | |
| outputs=[mask_img], | |
| ) | |
| submit.click( | |
| infer, | |
| inputs=[mask_img, prompt_text, negative_prompt_text], | |
| outputs=[output_img], | |
| ) | |
| clear.click( | |
| _clear, | |
| inputs=[ | |
| input_img, | |
| mask_img, | |
| output_img, | |
| prompt_text, | |
| negative_prompt_text, | |
| ], | |
| outputs=[ | |
| input_img, | |
| mask_img, | |
| output_img, | |
| prompt_text, | |
| negative_prompt_text, | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch() | |