Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import jax | |
| import jax.numpy as jnp | |
| from flax.jax_utils import replicate | |
| from flax.training.common_utils import shard | |
| from PIL import Image | |
| from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
| from diffusers import ( | |
| FlaxStableDiffusionControlNetPipeline, | |
| FlaxControlNetModel, | |
| ) | |
| from transformers import pipeline | |
| import colorsys | |
| sam_checkpoint = "sam_vit_h_4b8939.pth" | |
| model_type = "vit_h" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
| #sam.to(device=device) | |
| #predictor = SamPredictor(sam) | |
| #mask_generator = SamAutomaticMaskGenerator(sam) | |
| generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256) | |
| #image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| controlnet=controlnet, | |
| revision="flax", | |
| dtype=jnp.bfloat16, | |
| ) | |
| params["controlnet"] = controlnet_params | |
| p_params = replicate(params) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation") | |
| gr.Markdown( | |
| """ | |
| ## Work in Progress | |
| ### About | |
| We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images. | |
| For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset. | |
| We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names | |
| as input prompts for detection and more accurate segmentation. | |
| ### How To Use | |
| """ | |
| ) | |
| with gr.Row(): | |
| input_img = gr.Image(label="Input", type="pil") | |
| mask_img = gr.Image(label="Mask", interactive=False) | |
| output_img = gr.Image(label="Output", interactive=False) | |
| with gr.Row(): | |
| prompt_text = gr.Textbox(lines=1, label="Prompt") | |
| negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| clear = gr.Button("Clear") | |
| def generate_mask(image): | |
| outputs = generator(image, points_per_batch=256) | |
| mask_images = [] | |
| for mask in outputs["masks"]: | |
| color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0) | |
| h, w = mask.shape[-2:] | |
| mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| mask_images.append(mask_image) | |
| return np.stack(mask_images) | |
| # predictor.set_image(image) | |
| # input_point = np.array([120, 21]) | |
| # input_label = np.ones(input_point.shape[0]) | |
| # mask, _, _ = predictor.predict( | |
| # point_coords=input_point, | |
| # point_labels=input_label, | |
| # multimask_output=False, | |
| # ) | |
| # clear torch cache | |
| # torch.cuda.empty_cache() | |
| # mask = Image.fromarray(mask[0, :, :]) | |
| # segs = mask_generator.generate(image) | |
| # boolean_masks = [s["segmentation"] for s in segs] | |
| # finseg = np.zeros( | |
| # (boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8 | |
| # ) | |
| # # Loop over the boolean masks and assign a unique color to each class | |
| # for class_id, boolean_mask in enumerate(boolean_masks): | |
| # hue = class_id * 1.0 / len(boolean_masks) | |
| # rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) | |
| # rgb_mask = np.zeros( | |
| # (boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8 | |
| # ) | |
| # rgb_mask[:, :, 0] = boolean_mask * rgb[0] | |
| # rgb_mask[:, :, 1] = boolean_mask * rgb[1] | |
| # rgb_mask[:, :, 2] = boolean_mask * rgb[2] | |
| # finseg += rgb_mask | |
| # torch.cuda.empty_cache() | |
| # return mask | |
| def infer( | |
| image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 | |
| ): | |
| try: | |
| rng = jax.random.PRNGKey(int(seed)) | |
| num_inference_steps = int(num_inference_steps) | |
| image = Image.fromarray(image, mode="RGB") | |
| num_samples = max(jax.device_count(), int(num_samples)) | |
| p_rng = jax.random.split(rng, jax.device_count()) | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| negative_prompt_ids = pipe.prepare_text_inputs( | |
| [negative_prompts] * num_samples | |
| ) | |
| processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
| prompt_ids = shard(prompt_ids) | |
| negative_prompt_ids = shard(negative_prompt_ids) | |
| processed_image = shard(processed_image) | |
| output = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| prng_seed=p_rng, | |
| num_inference_steps=num_inference_steps, | |
| neg_prompt_ids=negative_prompt_ids, | |
| jit=True, | |
| ).images | |
| del negative_prompt_ids | |
| del processed_image | |
| del prompt_ids | |
| output = output.reshape((num_samples,) + output.shape[-3:]) | |
| final_image = [np.array(x * 255, dtype=np.uint8) for x in output] | |
| print(output.shape) | |
| del output | |
| except Exception as e: | |
| print("Error: " + str(e)) | |
| final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
| finally: | |
| gc.collect() | |
| return final_image | |
| def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
| img = None | |
| mask = None | |
| seg = None | |
| out = None | |
| prompt = "" | |
| neg_prompt = "" | |
| bg = False | |
| return img, mask, seg, out, prompt, neg_prompt, bg | |
| input_img.change( | |
| generate_mask, | |
| inputs=[input_img], | |
| outputs=[mask_img], | |
| ) | |
| submit.click( | |
| infer, | |
| inputs=[mask_img, prompt_text, negative_prompt_text], | |
| outputs=[output_img], | |
| ) | |
| clear.click( | |
| _clear, | |
| inputs=[ | |
| input_img, | |
| mask_img, | |
| output_img, | |
| prompt_text, | |
| negative_prompt_text, | |
| ], | |
| outputs=[ | |
| input_img, | |
| mask_img, | |
| output_img, | |
| prompt_text, | |
| negative_prompt_text, | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch() | |