sasha's picture
sasha HF Staff
Update app.py
c6131ee verified
raw
history blame
1.8 kB
import pickle
import gradio as gr
from datasets import load_dataset
from transformers import AutoModel, AutoFeatureExtractor
import wikipedia
# Only runs once when the script is first run.
with open("butts_1024_new.pickle", "rb") as handle:
index = pickle.load(handle)
# Load model for computing embeddings.
feature_extractor = AutoFeatureExtractor.from_pretrained(
"sasha/autotrain-butterfly-similarity-2490576840"
)
model = AutoModel.from_pretrained("sasha/autotrain-butterfly-similarity-2490576840")
# Candidate images.
dataset = load_dataset("sasha/butterflies_10k_names_multiple")
ds = dataset["train"]
def query(image, top_k=1):
inputs = feature_extractor(image, return_tensors="pt")
model_output = model(**inputs)
embedding = model_output.pooler_output.detach()
results = index.query(embedding, k=top_k)
inx = results[0][0].tolist()
logits = results[1][0].tolist()
butterfly = ds.select(inx)["image"]
butterfly[0].show()
return butterfly
with gr.Blocks() as demo:
gr.Markdown("# Find my Butterfly 🦋")
gr.Markdown(
"## Use this Space to find your butterfly, based on the [iNaturalist butterfly dataset](https://huggingface.co/datasets/huggan/inat_butterflies_top10k)!"
)
with gr.Row():
with gr.Column(scale=1):
inputs = gr.Image(width=288, height=384)
btn = gr.Button("Find my butterfly!")
description = gr.Markdown()
with gr.Column(scale=2):
outputs = gr.Gallery(rows=1)
gr.Markdown("### Image Examples")
gr.Examples(
examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"],
inputs=inputs,
outputs=outputs,
fn=query,
cache_examples=True,
)
btn.click(query, inputs, outputs)
demo.launch()