Spaces:
Running
Running
| import pickle | |
| import gradio as gr | |
| from datasets import load_dataset | |
| from transformers import AutoModel, AutoFeatureExtractor | |
| import wikipedia | |
| # Only runs once when the script is first run. | |
| with open("butts_1024_new.pickle", "rb") as handle: | |
| index = pickle.load(handle) | |
| # Load model for computing embeddings. | |
| feature_extractor = AutoFeatureExtractor.from_pretrained( | |
| "sasha/autotrain-butterfly-similarity-2490576840" | |
| ) | |
| model = AutoModel.from_pretrained("sasha/autotrain-butterfly-similarity-2490576840") | |
| # Candidate images. | |
| dataset = load_dataset("sasha/butterflies_10k_names_multiple") | |
| ds = dataset["train"] | |
| def query(image, top_k=1): | |
| inputs = feature_extractor(image, return_tensors="pt") | |
| model_output = model(**inputs) | |
| embedding = model_output.pooler_output.detach() | |
| results = index.query(embedding, k=top_k) | |
| inx = results[0][0].tolist() | |
| logits = results[1][0].tolist() | |
| butterfly = ds.select(inx)["image"] | |
| butterfly[0].show() | |
| return butterfly | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Find my Butterfly 🦋") | |
| gr.Markdown( | |
| "## Use this Space to find your butterfly, based on the [iNaturalist butterfly dataset](https://huggingface.co/datasets/huggan/inat_butterflies_top10k)!" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| inputs = gr.Image(width=288, height=384) | |
| btn = gr.Button("Find my butterfly!") | |
| description = gr.Markdown() | |
| with gr.Column(scale=2): | |
| outputs = gr.Gallery(rows=1) | |
| gr.Markdown("### Image Examples") | |
| gr.Examples( | |
| examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"], | |
| inputs=inputs, | |
| outputs=outputs, | |
| fn=query, | |
| cache_examples=True, | |
| ) | |
| btn.click(query, inputs, outputs) | |
| demo.launch() | |