Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
|
@@ -1,57 +1,20 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
model_name = "SamLowe/roberta-base-go_emotions"
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
"embarrassment": 0.7,
|
| 22 |
-
"annoyance": 0.6,
|
| 23 |
-
"confusion": 0.6,
|
| 24 |
-
"surprise": 0.4,
|
| 25 |
-
"desire": 0.4,
|
| 26 |
-
"love": 0.3,
|
| 27 |
-
"excitement": 0.3,
|
| 28 |
-
"pride": 0.3,
|
| 29 |
-
"optimism": 0.3,
|
| 30 |
-
"admiration": 0.2,
|
| 31 |
-
"gratitude": 0.2,
|
| 32 |
-
"relief": 0.2,
|
| 33 |
-
"joy": 0.2,
|
| 34 |
-
"amusement": 0.2,
|
| 35 |
-
"neutral": 0.1,
|
| 36 |
-
}
|
| 37 |
-
# Labels from GoEmotions
|
| 38 |
-
EMOTION_LABELS = tokenizer.convert_ids_to_tokens(list(range(model.config.num_labels)))
|
| 39 |
-
|
| 40 |
-
# Ensure the model is in evaluation mode
|
| 41 |
-
model.eval()
|
| 42 |
-
|
| 43 |
-
def predict_emotions(text: str):
|
| 44 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
| 45 |
-
outputs = model(**inputs)
|
| 46 |
-
probs = torch.sigmoid(outputs.logits)[0].detach().numpy()
|
| 47 |
-
|
| 48 |
-
threshold = 0.3 # You can tune this
|
| 49 |
-
predicted = {label: float(prob) for label, prob in zip(model.config.id2label.values(), probs) if prob > threshold}
|
| 50 |
-
return predicted
|
| 51 |
-
|
| 52 |
-
def calculate_distress(emotions: dict):
|
| 53 |
-
distress_score = sum(
|
| 54 |
-
emotions.get(emotion, 0) * DISTRESS_WEIGHTS.get(emotion, 0)
|
| 55 |
-
for emotion in emotions
|
| 56 |
-
)
|
| 57 |
-
return round(distress_score, 3)
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class EmotionModel:
|
| 5 |
+
def __init__(self):
|
| 6 |
+
self.model_name = "SamLowe/roberta-base-go_emotions"
|
| 7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 8 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
| 9 |
+
self.labels = self.model.config.id2label
|
| 10 |
+
|
| 11 |
+
def predict(self, text):
|
| 12 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 13 |
+
with torch.no_grad():
|
| 14 |
+
logits = self.model(**inputs).logits
|
| 15 |
+
probs = torch.sigmoid(logits)[0]
|
| 16 |
+
return {
|
| 17 |
+
self.labels[i]: float(probs[i])
|
| 18 |
+
for i in range(len(probs)) if probs[i] > 0.3
|
| 19 |
+
}
|
| 20 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|