Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| # Use the base (untrained) model from Hugging Face Hub | |
| model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
| api_key = os.environ.get("HF_KEY") # Your Hugging Face token | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, token = api_key) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, token = api_key) | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=512, | |
| do_sample=True, | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Combine history and system message into a prompt | |
| prompt = system_message.strip() + "\n" | |
| for user, assistant in history: | |
| if user: | |
| prompt += f"User: {user}\n" | |
| if assistant: | |
| prompt += f"Assistant: {assistant}\n" | |
| prompt += f"User: {message}\nAssistant:" | |
| outputs = pipe( | |
| prompt, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| response = outputs[0]["generated_text"][len(prompt):] | |
| yield response.strip() | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a professional AI coach helping people build skills.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |