skilllink-coach / app.py
SHIROI-07's picture
Update app.py
70cfc7e verified
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Use the base (untrained) model from Hugging Face Hub
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
api_key = os.environ.get("HF_KEY") # Your Hugging Face token
tokenizer = AutoTokenizer.from_pretrained(model_id, token = api_key)
model = AutoModelForCausalLM.from_pretrained(model_id, token = api_key)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Combine history and system message into a prompt
prompt = system_message.strip() + "\n"
for user, assistant in history:
if user:
prompt += f"User: {user}\n"
if assistant:
prompt += f"Assistant: {assistant}\n"
prompt += f"User: {message}\nAssistant:"
outputs = pipe(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.eos_token_id,
)
response = outputs[0]["generated_text"][len(prompt):]
yield response.strip()
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a professional AI coach helping people build skills.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()