Spaces:
Runtime error
Runtime error
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling
|
| 2 |
+
|
| 3 |
+
model_id = "mistralai/Mistral-7B-Instruct" # if you have resources
|
| 4 |
+
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 7 |
+
|
| 8 |
+
# Tokenize your dataset
|
| 9 |
+
def load_dataset(file_path, tokenizer, block_size=512):
|
| 10 |
+
return TextDataset(
|
| 11 |
+
tokenizer=tokenizer,
|
| 12 |
+
file_path=file_path,
|
| 13 |
+
block_size=block_size
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
train_dataset = load_dataset("coaching_data.txt", tokenizer)
|
| 17 |
+
|
| 18 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 19 |
+
tokenizer=tokenizer, mlm=False,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
training_args = TrainingArguments(
|
| 23 |
+
output_dir="./skilllink-coach",
|
| 24 |
+
overwrite_output_dir=True,
|
| 25 |
+
num_train_epochs=3,
|
| 26 |
+
per_device_train_batch_size=2,
|
| 27 |
+
save_steps=100,
|
| 28 |
+
save_total_limit=1,
|
| 29 |
+
logging_dir="./logs",
|
| 30 |
+
fp16=True, # If using GPU
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
trainer = Trainer(
|
| 34 |
+
model=model,
|
| 35 |
+
args=training_args,
|
| 36 |
+
data_collator=data_collator,
|
| 37 |
+
train_dataset=train_dataset,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
trainer.train()
|
| 41 |
+
trainer.save_model("./skilllink-coach")
|
| 42 |
+
tokenizer.save_pretrained("./skilllink-coach")
|