Spaces:
Runtime error
Runtime error
Upload losses.py
Browse files- src/losses.py +202 -0
src/losses.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
import pose_estimation
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class MSE(nn.Module):
|
| 10 |
+
def __init__(self, ignore=None):
|
| 11 |
+
super().__init__()
|
| 12 |
+
|
| 13 |
+
self.mse = torch.nn.MSELoss(reduction="none")
|
| 14 |
+
self.ignore = ignore if ignore is not None else []
|
| 15 |
+
|
| 16 |
+
def forward(self, y_pred, y_data):
|
| 17 |
+
loss = self.mse(y_pred, y_data)
|
| 18 |
+
|
| 19 |
+
if len(self.ignore) > 0:
|
| 20 |
+
loss[self.ignore] *= 0
|
| 21 |
+
|
| 22 |
+
return loss.sum() / (len(loss) - len(self.ignore))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Parallel(nn.Module):
|
| 26 |
+
def __init__(self, skeleton, ignore=None, ground_parallel=None):
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
self.skeleton = skeleton
|
| 30 |
+
if ignore is not None:
|
| 31 |
+
self.ignore = set(ignore)
|
| 32 |
+
else:
|
| 33 |
+
self.ignore = set()
|
| 34 |
+
|
| 35 |
+
self.ground_parallel = ground_parallel if ground_parallel is not None else []
|
| 36 |
+
self.parallel_in_3d = []
|
| 37 |
+
|
| 38 |
+
self.cos = None
|
| 39 |
+
|
| 40 |
+
def forward(self, y_pred3d, y_data, z, spine_j, global_step=0):
|
| 41 |
+
y_pred = y_pred3d[:, :2]
|
| 42 |
+
rleg, lleg = spine_j
|
| 43 |
+
|
| 44 |
+
Lcon2d = Lcount = 0
|
| 45 |
+
if hasattr(self, "contact_2d"):
|
| 46 |
+
for c2d in self.contact_2d:
|
| 47 |
+
for (
|
| 48 |
+
(src_1, dst_1, t_1),
|
| 49 |
+
(src_2, dst_2, t_2),
|
| 50 |
+
) in itertools.combinations(c2d, 2):
|
| 51 |
+
|
| 52 |
+
a_1 = torch.lerp(y_data[src_1], y_data[dst_1], t_1)
|
| 53 |
+
a_2 = torch.lerp(y_data[src_2], y_data[dst_2], t_2)
|
| 54 |
+
a = a_2 - a_1
|
| 55 |
+
|
| 56 |
+
b_1 = torch.lerp(y_pred[src_1], y_pred[dst_1], t_1)
|
| 57 |
+
b_2 = torch.lerp(y_pred[src_2], y_pred[dst_2], t_2)
|
| 58 |
+
b = b_2 - b_1
|
| 59 |
+
|
| 60 |
+
lcon2d = ((a - b) ** 2).sum()
|
| 61 |
+
Lcon2d = Lcon2d + lcon2d
|
| 62 |
+
Lcount += 1
|
| 63 |
+
|
| 64 |
+
if Lcount > 0:
|
| 65 |
+
Lcon2d = Lcon2d / Lcount
|
| 66 |
+
|
| 67 |
+
Ltan = Lpar = Lcos = Lcount = 0
|
| 68 |
+
Lspine = 0
|
| 69 |
+
for i, bone in enumerate(self.skeleton):
|
| 70 |
+
if bone in self.ignore:
|
| 71 |
+
continue
|
| 72 |
+
|
| 73 |
+
src, dst = bone
|
| 74 |
+
|
| 75 |
+
b = y_data[dst] - y_data[src]
|
| 76 |
+
t = nn.functional.normalize(b, dim=0)
|
| 77 |
+
n = torch.stack([-t[1], t[0]])
|
| 78 |
+
|
| 79 |
+
if src == 10 and dst == 11: # right leg
|
| 80 |
+
a = rleg
|
| 81 |
+
elif src == 13 and dst == 14: # left leg
|
| 82 |
+
a = lleg
|
| 83 |
+
else:
|
| 84 |
+
a = y_pred[dst] - y_pred[src]
|
| 85 |
+
|
| 86 |
+
bone_name = f"{pose_estimation.KPS[src]}_{pose_estimation.KPS[dst]}"
|
| 87 |
+
c = a - b
|
| 88 |
+
lcos_loc = ltan_loc = lpar_loc = 0
|
| 89 |
+
if self.cos is not None:
|
| 90 |
+
if bone not in [
|
| 91 |
+
(1, 2), # Neck + Right Shoulder
|
| 92 |
+
(1, 5), # Neck + Left Shoulder
|
| 93 |
+
(9, 10), # Hips + Right Upper Leg
|
| 94 |
+
(9, 13), # Hips + Left Upper Leg
|
| 95 |
+
]:
|
| 96 |
+
a = y_pred[dst] - y_pred[src]
|
| 97 |
+
l2d = torch.norm(a, dim=0)
|
| 98 |
+
l3d = torch.norm(y_pred3d[dst] - y_pred3d[src], dim=0)
|
| 99 |
+
lcos = self.cos[i]
|
| 100 |
+
|
| 101 |
+
lcos_loc = (l2d / l3d - lcos) ** 2
|
| 102 |
+
Lcos = Lcos + lcos_loc
|
| 103 |
+
lpar_loc = ((a / l2d) * n).sum() ** 2
|
| 104 |
+
Lpar = Lpar + lpar_loc
|
| 105 |
+
else:
|
| 106 |
+
ltan_loc = ((c * t).sum()) ** 2
|
| 107 |
+
Ltan = Ltan + ltan_loc
|
| 108 |
+
lpar_loc = (c * n).sum() ** 2
|
| 109 |
+
Lpar = Lpar + lpar_loc
|
| 110 |
+
|
| 111 |
+
Lcount += 1
|
| 112 |
+
|
| 113 |
+
if Lcount > 0:
|
| 114 |
+
Ltan = Ltan / Lcount
|
| 115 |
+
Lcos = Lcos / Lcount
|
| 116 |
+
Lpar = Lpar / Lcount
|
| 117 |
+
Lspine = Lspine / Lcount
|
| 118 |
+
|
| 119 |
+
Lgr = Lcount = 0
|
| 120 |
+
for (src, dst), value in self.ground_parallel:
|
| 121 |
+
bone = y_pred[dst] - y_pred[src]
|
| 122 |
+
bone = nn.functional.normalize(bone, dim=0)
|
| 123 |
+
l = (torch.abs(bone[0]) - value) ** 2
|
| 124 |
+
|
| 125 |
+
Lgr = Lgr + l
|
| 126 |
+
Lcount += 1
|
| 127 |
+
|
| 128 |
+
if Lcount > 0:
|
| 129 |
+
Lgr = Lgr / Lcount
|
| 130 |
+
|
| 131 |
+
Lstraight3d = Lcount = 0
|
| 132 |
+
for (i, j), (k, l) in self.parallel_in_3d:
|
| 133 |
+
a = z[j] - z[i]
|
| 134 |
+
a = nn.functional.normalize(a, dim=0)
|
| 135 |
+
b = z[l] - z[k]
|
| 136 |
+
b = nn.functional.normalize(b, dim=0)
|
| 137 |
+
lo = (((a * b).sum() - 1) ** 2).sum()
|
| 138 |
+
Lstraight3d = Lstraight3d + lo
|
| 139 |
+
Lcount += 1
|
| 140 |
+
|
| 141 |
+
b = y_data[1] - y_data[8]
|
| 142 |
+
b = nn.functional.normalize(b, dim=0)
|
| 143 |
+
|
| 144 |
+
if Lcount > 0:
|
| 145 |
+
Lstraight3d = Lstraight3d / Lcount
|
| 146 |
+
|
| 147 |
+
return Ltan, Lcos, Lpar, Lspine, Lgr, Lstraight3d, Lcon2d
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class MimickedSelfContactLoss(nn.Module):
|
| 151 |
+
def __init__(self, geodesics_mask):
|
| 152 |
+
super().__init__()
|
| 153 |
+
"""
|
| 154 |
+
Loss that lets vertices in contact on presented mesh attract vertices that are close.
|
| 155 |
+
"""
|
| 156 |
+
# geodesic distance mask
|
| 157 |
+
self.register_buffer("geomask", geodesics_mask)
|
| 158 |
+
|
| 159 |
+
def forward(
|
| 160 |
+
self,
|
| 161 |
+
presented_contact,
|
| 162 |
+
vertices,
|
| 163 |
+
v2v=None,
|
| 164 |
+
contact_mode="dist_tanh",
|
| 165 |
+
contact_thresh=1,
|
| 166 |
+
):
|
| 167 |
+
|
| 168 |
+
contactloss = 0.0
|
| 169 |
+
|
| 170 |
+
if v2v is None:
|
| 171 |
+
# compute pairwise distances
|
| 172 |
+
verts = vertices.contiguous()
|
| 173 |
+
nv = verts.shape[1]
|
| 174 |
+
v2v = verts.squeeze().unsqueeze(1).expand(
|
| 175 |
+
nv, nv, 3
|
| 176 |
+
) - verts.squeeze().unsqueeze(0).expand(nv, nv, 3)
|
| 177 |
+
v2v = torch.norm(v2v, 2, 2)
|
| 178 |
+
|
| 179 |
+
# loss for self-contact from mimic'ed pose
|
| 180 |
+
if len(presented_contact) > 0:
|
| 181 |
+
# without geodesic distance mask, compute distances
|
| 182 |
+
# between each pair of verts in contact
|
| 183 |
+
with torch.no_grad():
|
| 184 |
+
cvertstobody = v2v[presented_contact, :]
|
| 185 |
+
cvertstobody = cvertstobody[:, presented_contact]
|
| 186 |
+
maskgeo = self.geomask[presented_contact, :]
|
| 187 |
+
maskgeo = maskgeo[:, presented_contact]
|
| 188 |
+
weights = torch.ones_like(cvertstobody).to(verts.device)
|
| 189 |
+
weights[~maskgeo] = float("inf")
|
| 190 |
+
min_idx = torch.min((cvertstobody + 1) * weights, 1)[1]
|
| 191 |
+
min_idx = presented_contact[min_idx.cpu().numpy()]
|
| 192 |
+
|
| 193 |
+
v2v_min = v2v[presented_contact, min_idx]
|
| 194 |
+
|
| 195 |
+
# tanh will not pull vertices that are ~more than contact_thres far apart
|
| 196 |
+
if contact_mode == "dist_tanh":
|
| 197 |
+
contactloss = contact_thresh * torch.tanh(v2v_min / contact_thresh)
|
| 198 |
+
contactloss = contactloss.mean()
|
| 199 |
+
else:
|
| 200 |
+
contactloss = v2v_min.mean()
|
| 201 |
+
|
| 202 |
+
return contactloss
|