Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| import re | |
| import unicodedata | |
| from typing import Dict, List, Tuple | |
| import ftfy | |
| import nltk | |
| from bert_score import score as bert_score | |
| from rouge_score import rouge_scorer | |
| from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction | |
| from nltk.translate.meteor_score import meteor_score | |
| from deepeval.test_case import LLMTestCase | |
| from deepeval.metrics import AnswerRelevancyMetric, FaithfulnessMetric, GEval | |
| from deepeval.models import DeepEvalBaseLLM | |
| import google.generativeai as genai | |
| from groq import Groq | |
| import os | |
| from io import StringIO | |
| # Download required NLTK data | |
| nltk.download('punkt', quiet=True) | |
| nltk.download('wordnet', quiet=True) | |
| # Configuration | |
| GEMINI_API_KEY = "your_gemini_api_key" # Replace with your key | |
| GROQ_API_KEY = "your_groq_api_key" # Replace with your key | |
| # Initialize APIs | |
| genai.configure(api_key=GEMINI_API_KEY) | |
| groq_client = Groq(api_key=GROQ_API_KEY) | |
| class LLMProvider: | |
| """Abstract base class for LLM providers""" | |
| def __init__(self, model_name: str): | |
| self.model_name = model_name | |
| def generate(self, prompt: str) -> str: | |
| raise NotImplementedError | |
| def get_model_name(self) -> str: | |
| return self.model_name | |
| class GeminiProvider(LLMProvider): | |
| """Gemini implementation""" | |
| def __init__(self, model_name: str = "gemini-1.5-flash"): | |
| super().__init__(model_name) | |
| self.model = genai.GenerativeModel(model_name) | |
| def generate(self, prompt: str) -> str: | |
| try: | |
| response = self.model.generate_content(prompt) | |
| return response.text.strip() | |
| except Exception as e: | |
| return f"Error generating with Gemini: {str(e)}" | |
| class GroqProvider(LLMProvider): | |
| """Groq implementation for LLaMA models""" | |
| def __init__(self, model_name: str = "llama3-70b-8192"): | |
| super().__init__(model_name) | |
| def generate(self, prompt: str) -> str: | |
| try: | |
| chat_completion = groq_client.chat.completions.create( | |
| messages=[ | |
| {"role": "user", "content": prompt} | |
| ], | |
| model=self.model_name, | |
| temperature=0.7, | |
| max_tokens=2048 | |
| ) | |
| return chat_completion.choices[0].message.content.strip() | |
| except Exception as e: | |
| return f"Error generating with Groq: {str(e)}" | |
| class DeepEvalLLMWrapper(DeepEvalBaseLLM): | |
| """Wrapper for DeepEval to work with our providers""" | |
| def __init__(self, provider: LLMProvider): | |
| self.provider = provider | |
| def load_model(self): | |
| return self.provider | |
| def generate(self, prompt: str) -> str: | |
| return self.provider.generate(prompt) | |
| def get_model_name(self) -> str: | |
| return self.provider.get_model_name() | |
| def clean_text(text: str) -> str: | |
| """Clean text by fixing encoding and normalizing""" | |
| if not text or not isinstance(text, str): | |
| return "" | |
| # Fix encoding artifacts | |
| text = ftfy.fix_text(text) | |
| text = unicodedata.normalize('NFKD', text) | |
| # Fix quotes and other common issues | |
| text = text.replace('Γ’β¬Ε', '"').replace('Γ’β¬', '"') | |
| text = text.replace('Γ’β¬β', '-').replace('Γ’β¬β', '-') | |
| text = text.replace('Γ’β¬Λ', "'").replace('Γ’β¬β’', "'") | |
| # Remove non-ASCII characters | |
| text = re.sub(r'[^\x00-\x7F]+', ' ', text) | |
| # Normalize whitespace | |
| text = ' '.join(text.split()) | |
| return text.strip() | |
| def evaluate_metrics(input_text: str, candidate_text: str, reference_text: str) -> Dict: | |
| """Run comprehensive evaluation on the generated text""" | |
| # Clean the texts | |
| cleaned_input = clean_text(input_text) | |
| cleaned_candidate = clean_text(candidate_text) | |
| cleaned_reference = clean_text(reference_text) | |
| results = {} | |
| # Traditional metrics | |
| try: | |
| # BLEU Score | |
| smooth = SmoothingFunction().method4 | |
| bleu_score = sentence_bleu( | |
| [cleaned_reference.split()], | |
| cleaned_candidate.split(), | |
| smoothing_function=smooth | |
| ) | |
| results["BLEU"] = bleu_score | |
| # ROUGE Score | |
| rouge_scorer_obj = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) | |
| rouge_scores = rouge_scorer_obj.score(cleaned_reference, cleaned_candidate) | |
| rouge_avg = (rouge_scores['rouge1'].fmeasure + | |
| rouge_scores['rouge2'].fmeasure + | |
| rouge_scores['rougeL'].fmeasure) / 3 | |
| results["ROUGE"] = rouge_avg | |
| # METEOR Score | |
| meteor = meteor_score([cleaned_reference.split()], cleaned_candidate.split()) | |
| results["METEOR"] = meteor | |
| # BERT Score | |
| P, R, F1 = bert_score([cleaned_candidate], [cleaned_reference], lang="en", verbose=False) | |
| results["BERTScore"] = F1.item() | |
| except Exception as e: | |
| results["Error"] = f"Traditional metrics error: {str(e)}" | |
| # LLM-as-judge metrics (using Gemini for consistency) | |
| try: | |
| judge_provider = GeminiProvider("gemini-1.5-flash") | |
| judge_wrapper = DeepEvalLLMWrapper(judge_provider) | |
| test_case = LLMTestCase( | |
| input=cleaned_input, | |
| actual_output=cleaned_candidate, | |
| expected_output=cleaned_reference | |
| ) | |
| # Answer Relevancy | |
| answer_rel = AnswerRelevancyMetric(model=judge_wrapper) | |
| answer_rel.measure(test_case) | |
| results["AnswerRelevancy"] = answer_rel.score | |
| # Faithfulness | |
| faith = FaithfulnessMetric(model=judge_wrapper) | |
| faith.measure(test_case) | |
| results["Faithfulness"] = faith.score | |
| # GEval | |
| geval = GEval( | |
| name="OverallQuality", | |
| criteria="Evaluate if the candidate response is accurate, complete, and well-written.", | |
| evaluation_params=[ | |
| "input", "actual_output", "expected_output" | |
| ], | |
| model=judge_wrapper | |
| ) | |
| geval.measure(test_case) | |
| results["GEval"] = geval.score | |
| except Exception as e: | |
| results["LLM_Judge_Error"] = f"LLM-as-judge metrics error: {str(e)}" | |
| # Normalization and Hybrid Score | |
| normalization_ranges = { | |
| "AnswerRelevancy": (0.0, 1.0), | |
| "Faithfulness": (0.0, 1.0), | |
| "GEval": (0.0, 1.0), | |
| "BERTScore": (0.7, 0.95), | |
| "ROUGE": (0.0, 0.6), | |
| "BLEU": (0.0, 0.4), | |
| "METEOR": (0.0, 0.6) | |
| } | |
| weights = { | |
| "AnswerRelevancy": 0.10, | |
| "Faithfulness": 0.10, | |
| "GEval": 0.025, | |
| "BERTScore": 0.20, | |
| "ROUGE": 0.15, | |
| "BLEU": 0.025, | |
| "METEOR": 0.15 | |
| } | |
| # Normalize scores | |
| normalized_scores = {} | |
| for metric, value in results.items(): | |
| if metric in normalization_ranges and isinstance(value, (int, float)): | |
| min_v, max_v = normalization_ranges[metric] | |
| if max_v > min_v: # Avoid division by zero | |
| norm = max(min((value - min_v) / (max_v - min_v), 1.0), 0.0) | |
| normalized_scores[metric] = norm | |
| else: | |
| normalized_scores[metric] = 0.5 | |
| elif isinstance(value, (int, float)): | |
| normalized_scores[metric] = value | |
| # Calculate weighted average | |
| if normalized_scores: | |
| weighted_sum = sum(normalized_scores.get(m, 0) * w for m, w in weights.items()) | |
| total_weight = sum(w for m, w in weights.items() if m in normalized_scores) | |
| results["WeightedAverage"] = weighted_sum / total_weight if total_weight > 0 else 0.0 | |
| else: | |
| results["WeightedAverage"] = 0.0 | |
| return results | |
| def process_single_text(input_text: str, model_choice: str) -> Tuple[str, str, Dict]: | |
| """Process a single text input""" | |
| if not input_text or len(input_text.strip()) < 10: | |
| return "", "", {"Error": "Input text too short"} | |
| # Choose model | |
| if model_choice == "Gemini": | |
| provider = GeminiProvider("gemini-1.5-flash") | |
| elif model_choice == "LLaMA-3-70b": | |
| provider = GroqProvider("llama3-70b-8192") | |
| else: # LLaMA-3-8b | |
| provider = GroqProvider("llama3-8b-8192") | |
| # Generate candidate | |
| prompt = f"""Rewrite the following paragraph in a fresh, concise, and professional style while preserving its full meaning and key information: | |
| {input_text} | |
| Provide only the rewritten text without any additional commentary.""" | |
| candidate = provider.generate(prompt) | |
| # Use cleaned input as reference (simulating human-quality standard) | |
| reference = clean_text(input_text) | |
| # Evaluate | |
| scores = evaluate_metrics(input_text, candidate, reference) | |
| return candidate, reference, scores | |
| def process_file(file_obj, model_choice: str) -> Tuple[pd.DataFrame, str]: | |
| """Process a CSV file with multiple articles""" | |
| try: | |
| # Read the file | |
| content = file_obj.read().decode('utf-8') | |
| df = pd.read_csv(StringIO(content)) | |
| # Assume first column is the text | |
| text_column = df.columns[0] | |
| results = [] | |
| for idx, row in df.iterrows(): | |
| text = str(row[text_column]) | |
| candidate, reference, scores = process_single_text(text, model_choice) | |
| result_row = { | |
| 'Original_Text': text, | |
| 'Generated_Candidate': candidate, | |
| 'Reference_Text': reference | |
| } | |
| result_row.update(scores) | |
| results.append(result_row) | |
| results_df = pd.DataFrame(results) | |
| return results_df, "File processed successfully!" | |
| except Exception as e: | |
| return pd.DataFrame(), f"Error processing file: {str(e)}" | |
| def create_gradio_interface(): | |
| """Create the Gradio interface""" | |
| with gr.Blocks(title="LLM Evaluation Framework") as demo: | |
| gr.Markdown("# π LLM Evaluation Framework for Professional Content Rewriting") | |
| gr.Markdown("Evaluate and compare LLM-generated content using multiple metrics. Choose between Gemini and LLaMA models.") | |
| with gr.Tabs(): | |
| with gr.Tab("Single Text Processing"): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| input_text = gr.Textbox( | |
| label="Input Text", | |
| placeholder="Enter the text you want to rewrite...", | |
| lines=10 | |
| ) | |
| model_choice_single = gr.Radio( | |
| ["Gemini", "LLaMA-3-70b", "LLaMA-3-8b"], | |
| label="Choose Model", | |
| value="Gemini" | |
| ) | |
| submit_btn = gr.Button("Generate & Evaluate", variant="primary") | |
| with gr.Column(scale=3): | |
| gr.Markdown("### Results") | |
| with gr.Tabs(): | |
| with gr.Tab("Generated Text"): | |
| candidate_output = gr.Textbox( | |
| label="Generated Candidate", | |
| lines=10, | |
| show_copy_button=True | |
| ) | |
| reference_output = gr.Textbox( | |
| label="Reference Text (Cleaned Input)", | |
| lines=5, | |
| show_copy_button=True | |
| ) | |
| with gr.Tab("Evaluation Scores"): | |
| scores_output = gr.JSON(label="Detailed Scores") | |
| weighted_avg = gr.Number( | |
| label="Weighted Average Score (0-1)", | |
| precision=4 | |
| ) | |
| interpretation = gr.Textbox( | |
| label="Interpretation", | |
| interactive=False | |
| ) | |
| with gr.Tab("Batch Processing (CSV File)"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| file_input = gr.File( | |
| label="Upload CSV File", | |
| file_types=['.csv'] | |
| ) | |
| model_choice_file = gr.Radio( | |
| ["Gemini", "LLaMA-3-70b", "LLaMA-3-8b"], | |
| label="Choose Model for Batch Processing", | |
| value="Gemini" | |
| ) | |
| process_file_btn = gr.Button("Process File", variant="primary") | |
| with gr.Column(scale=2): | |
| gr.Markdown("### Results") | |
| file_results = gr.Dataframe( | |
| label="Evaluation Results", | |
| interactive=False | |
| ) | |
| file_status = gr.Textbox(label="Status") | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["The immune system plays a crucial role in protecting the human body from pathogens such as bacteria, viruses, and other harmful invaders. It is composed of innate and adaptive components that work together to detect and eliminate foreign threats.", "Gemini"], | |
| ["Climate change is one of the most pressing challenges facing humanity today. Rising global temperatures have led to severe weather patterns, including more intense storms, droughts, and heatwaves.", "LLaMA-3-70b"] | |
| ], | |
| inputs=[input_text, model_choice_single], | |
| outputs=[candidate_output, reference_output, scores_output, weighted_avg, interpretation] | |
| ) | |
| # Event handlers | |
| def handle_single_process(text, model): | |
| if not text: | |
| return "", "", {}, 0, "Please enter some text." | |
| candidate, reference, scores = process_single_text(text, model) | |
| # Get weighted average | |
| weighted_avg_val = scores.get("WeightedAverage", 0) | |
| # Interpretation | |
| if weighted_avg_val >= 0.85: | |
| interpretation_text = "β Outstanding performance (A) - ready for professional use" | |
| elif weighted_avg_val >= 0.70: | |
| interpretation_text = "β Strong performance (B) - good quality with minor improvements" | |
| elif weighted_avg_val >= 0.50: | |
| interpretation_text = "β οΈ Adequate performance (C) - usable but needs refinement" | |
| elif weighted_avg_val >= 0.30: | |
| interpretation_text = "β Weak performance (D) - requires significant revision" | |
| else: | |
| interpretation_text = "β Poor performance (F) - likely needs complete rewriting" | |
| return candidate, reference, scores, weighted_avg_val, interpretation_text | |
| def handle_file_process(file, model): | |
| if file is None: | |
| return pd.DataFrame(), "Please upload a file." | |
| return process_file(file, model) | |
| submit_btn.click( | |
| fn=handle_single_process, | |
| inputs=[input_text, model_choice_single], | |
| outputs=[candidate_output, reference_output, scores_output, weighted_avg, interpretation] | |
| ) | |
| process_file_btn.click( | |
| fn=handle_file_process, | |
| inputs=[file_input, model_choice_file], | |
| outputs=[file_results, file_status] | |
| ) | |
| gr.Markdown(""" | |
| ## π How to Use | |
| 1. **Single Text Processing**: Enter your text and choose a model to generate a professional rewrite. | |
| 2. **Batch Processing**: Upload a CSV file with one article per row in the first column. | |
| 3. **Model Options**: | |
| - **Gemini**: Google's advanced language model | |
| - **LLaMA-3-70b**: Large Meta model (70B parameters) | |
| - **LLaMA-3-8b**: Smaller Meta model (8B parameters) | |
| ## π Evaluation Metrics | |
| The system evaluates performance using multiple metrics: | |
| - **Traditional**: BLEU, ROUGE, METEOR (n-gram overlap) | |
| - **Semantic**: BERTScore (embedding similarity) | |
| - **LLM-as-Judge**: AnswerRelevancy, Faithfulness, GEval | |
| - **Final Score**: Weighted average of all metrics (0-1 scale) | |
| """) | |
| return demo | |
| # Launch the app | |
| if __name__ == "__main__": | |
| app = create_gradio_interface() | |
| app.launch(share=True) |